1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Angular velocity and vectors

  1. Feb 2, 2009 #1
    Angular velocity and vectors....

    1. The problem statement, all variables and given/known data

    Given the following vectors:

    [tex]\vec A=\hat i +\hat j - 2\hat k[/tex] and [tex]\vec C=\hat j - 5\hat k[/tex]

    Let [tex]\vec A[/tex] and [tex]\vec C[/tex] be drown from a common origin and let [tex]\vec C[/tex] rotate about [tex]\vec A[/tex] with angular velocity [tex]\vec w[/tex] of [tex]2 \frac{rad}{s}[/tex]. Find the velocity [tex]\vec v[/tex] of the head of [tex]\vec C[/tex].

    2. Relevant equations

    3. The attempt at a solution

    My step-by-step way for resolving it, is:

    1)I know that [tex]\vec v= w \times \vec C [/tex]
    2) By multiplying: [tex]\vec A \times \vec C [/tex] I'll find a vector parallel to [tex]\vec w[/tex] namely D
    3) Now, [tex]\vec D= \vec A\times \vec C=(\hat i +\hat j - 2\hat k) \times (\hat j - 5\hat k) = 7*\hat i -5*\hat j +\hat k [/tex]

    4) I also know that [tex]\vec w[/tex] is obtained by a linear combination of [tex]\vec D[/tex]'s parameter. Then:

    [tex]\vec w= a * \vec D=a * (7*\hat i -5*\hat j +\hat k)[/tex]

    but [tex]|\vec w|= 2 [/tex] so [tex] a= \frac{2}{|\vec D|}[/tex] --> [tex]a=\sqrt{75} [/tex]. Finally [tex]\vect w= \frac{2}{\sqrt{75}} (7*\hat i -5*\hat j +\hat k) [/tex]


    [tex] \vect v= \vect w \times \vect C = \frac{2}{\sqrt{75}} (7*\hat i -5*\hat j +\hat k) \times (\hat j - 5\hat k) [/tex]

    is that correct?

    Thanks to all... :smile:
  2. jcsd
  3. Feb 3, 2009 #2
    Re: Angular velocity and vectors....

    nobody? :frown:
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Angular velocity and vectors
  1. Angular Velocity (Replies: 9)