(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Block A in the figure View Figure weighs w_1 and block B weighs w_2. The coefficient of kinetic friction between all surfaces is u_k.

Find the magnitude of the horizontal force \vec{F} necessary to drag block B to the left at constant speed if A is held at rest (figure (b)).

2. Relevant equations

F = ma

a = 0

3. The attempt at a solution

I attempted by drawing two FBDs for A and B. I have for

B: w_2 downward, F_aonb downward, normal force upward, F to the left dragging, and fk_ground

A: w_1 downward, normal force upward, F_bona, and fk_ab

Then I solved for the normal force and I got n = (w_1+w_2)/2 and then I plugged it into the fk = ukn, but well wrong answer.

I have a few questions because I don't really understand the whole picture. There's two frictional forces acting on B right? From A and from the ground? Is this correct? Also, the normal force for both B and A...are they the same or are they different? They're different right?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Another Friction Problem

**Physics Forums | Science Articles, Homework Help, Discussion**