So, I need to prove that, if G is a group and X is a nonempty subset of G, then the subgroup <X> generated by the set X consists of all finite products a1^n1*a2^n2*... *at^nt, where ai is from X and ni are integers.(adsbygoogle = window.adsbygoogle || []).push({});

First of all, one needs to show that the set H of all such products is a subgroup of G. Let a, b be elements from H, where a = a1^n1*a2^n2*... *at^nt, b = a1^p1*a2^p2*...*at^pt. H < G iff ab^-1 is in H. We have

ab^-1 = a1^n1*a2^n2*... *at^nt * (at^pt)^-1*...(a1^p1)^-1. I don't see where this leads, perhaps I'm doing it the wrong way.

After showing that H < G, one should show that H is contained in every subgroup of G containing X, which is almost obvious.

One thing may have confused me, though. Does a1^n1*a2^n2*... *at^nt mean that X = {a1, ..., at}, or is the t not important, since it isn't specified in the theorem (it's only important that ai is from X)? In that case, the proof would be very easy.

Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Another group theorem

**Physics Forums | Science Articles, Homework Help, Discussion**