Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Anyone got an image of the inside of an electron?

  1. Mar 2, 2005 #1
    Anyone got an image of the inside of an electron? I remember seeing something like this? It's like, there are spirals coming out of a circle? This is a photo taken immediately after two atoms were rammed into one another and therefore scientists were able to see the insides of an atom, and the smaller particles like quarks, etc.
  2. jcsd
  3. Mar 2, 2005 #2


    User Avatar
    Science Advisor
    Homework Helper

    You don't make any sense,sorry.Electrons are fundamental particles (no composite structure) and moreover,in SM at least,POINT PARTICLES...Just mathematical models of the real particle...

  4. Mar 3, 2005 #3


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    What you saw were the trajectories of the particles "produced" by the collision.
  5. Mar 3, 2005 #4
    SM? I'm not sure what you are refering to by those two letters could you please elaborate.
  6. Mar 3, 2005 #5

    Doc Al

    User Avatar

    Staff: Mentor

    SM = Standard Model, I presume.
  7. Mar 3, 2005 #6


    User Avatar
    Science Advisor
    Homework Helper

    Yes,in HEP (High Energy Physics),acronyms are frequently used,because the names would be too long...Standard Model (SM) is short for The Standard Model of Particles and Interactions...And examples may continue...

  8. Mar 3, 2005 #7


    User Avatar
    Gold Member

    Exactly. You see spirals because a magnetic field is applied in the whole experiment, so the particles will turn differently depending on his mass and electric charge. When you see an V sign coming from nobody (as in the "V for Vendetta" comic), it is that an uncharged particle has disintegrated into a particle/antiparticle pair.
  9. Mar 4, 2005 #8
    I would like to know more about particle tracks and their interpretations as above. I have what amounts, perhaps, to a BS in physics, with some excursions into the graduate world, but it is hard to judge my own competance since I am mostly self-educated.

    Perhaps the learned gentlemen will have some advice helpful to an autopedant?

    Thank you.

    Richard T. Harbaugh
  10. Mar 4, 2005 #9


    User Avatar
    Gold Member

    Richard, the tracks are created due to the perturbations caused by a charged particle when crossing some specific detection media, usually "bubble chamber", but also wires or even primitive for chambers. Thus the first rule is that you can not see neutral particles.

    Now, the trick is to disposse a magnetic field so that any particle moving across will experiment a lateral force, according the vectorial product rule you will know. This will evolve to a circular trajectory or more usually an spiral. The radius of this trajectory will obviously depend of the velocity and mass of the particle, thus of energy and momentum. Pairs particle/antiparticle will then trace exactly mirrored trajectories in a chamber.

    The moral is, if you are told what to look for, you can easily to find it. The reverse is not so true, and there is a whole computational industry about how to analize these images to select interesting events.
  11. Mar 4, 2005 #10
    Heh, I remember always seeing those in elementary/middle school science books and just thinking they were just "art" ment to look cool and science "ficitiony." I even had one as my wallpaper on my desktop for a while. Only when I took high school physics I finally found out what they were.
  12. Mar 5, 2005 #11


    User Avatar
    Science Advisor

    To date, no experimental evidence exists showing electron structure. However, QED, and the Standard model do strongly suggest that massive leptons, electrons, muons and so forth, have structure -- due to "clouds" of photons and virtual pairs, characteristic of field theories -- self energies and all that. Trouble is, the computations of structure for electrons are beyond our computational capabilities. But we do know that the effective mean square radius of the electron is below our ability to detect. Seems safe enough to consider electrons as point particles, but who knows?

    Reilly Atkinson
  13. Mar 7, 2005 #12
    Anyone have that image that you guys are talking about? The one with the collisions?
  14. Mar 12, 2005 #13
    Beta Theory...

    Semi-classical and classical QED predict the physical properties of a beta particle.

    Photons scatter from an apparent EM energy 'cloud' at the classical radius and beta particles hard scatter from an apparent Weak energy 'cloud' at the semi-classical radius, hence, a type of force carrier for EM+Weak interactions:

    Classical Beta Radius:
    [tex]r_e = \frac{ \hbar \alpha}{M_e c}[/tex]
    [tex]r_e = 2.817 \cdot 10^{-15} \; m[/tex]

    Semi-Classical Beta Nuclear Radius:
    [tex]r_\beta = r_0 \left( M_e N_a \right)^{1/3}[/tex]
    [tex]r_\beta = 9.823 \cdot 10^{-17} \; m[/tex]

    Essentially just a type of energy waveform existing at the semi-classical beta nuclear radius which is referred to as a 'fundamental particle'. No 'composite' structure except that of charge eminating from this waveform and a magnetic field as the result of the waveform charge.

    There is a theory that the Beta Nucleus is composed of three Anti-Rishon Preons:

    This is based upon the Rishon-Preon model, however theorists argue that because beta particles are 'fundamental', there cannot be any more composite particles. All current evidence suggests that beta particles are in fact non-composite fundamentals.

    Last edited: Mar 12, 2005
  15. Mar 12, 2005 #14
    Is the guy not talking about the image of electron interference patterns from a ring of atoms? I seem to recall that a small circle of about two dozen atoms produces a uniform electron resonance pattern inside the circle which rises to a sharp peak in the centre, and can be imaged by SEM.
  16. Mar 12, 2005 #15
    Ah. I see he wasn't. Teach me to read more thoroughly.
  17. Mar 12, 2005 #16
    Any images yet? :p :(
  18. Mar 19, 2005 #17

    If you look at the uncertainty principle, the energies of the constituant particles of the electron would be huge. If I remember correctly, the mass would be atleast a few hundred GeV. I had a professor who had us calculate the rough expected mass of these particles if they existed. I remember the value was huge. I will see if I still have the assignment and the solution available.
    This seems to be the biggest problem from my understanding.
  19. Mar 19, 2005 #18
    It sounded to me like the OP was referring to a photograph of a bubble chamber...I could be way off. In any event, here's a picture of one, tell us if that's what you had in mind. It does NOT show the innards of electrons though (as there isn't any)

    Bubble Chamber Photograph
  20. Mar 22, 2005 #19
    This is what I got ^^
  21. Mar 22, 2005 #20
    Bubble Chamber Photo

    This image is an old photo from a bubble chamber at Brookhaven National Lab. It is a little dark, but you can see where a single particle (a negative pi-meson) hits a target proton and creates two particles that leave tracks in the shape of a sideways V.

    Attached Files:

    Last edited: Mar 22, 2005
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook