- #1

- 3,269

- 5

v=197

If $y=x \sin x,$ then $\dfrac{dy}{dx}=$

$a.\quad\sin{x}+\cos{x}$

$b.\quad\sin{x}+x\cos{x}$

$c.\quad\sin{x}+\cos{x}$

$d.\quad x(\sin{x}+\cos{x})$

$e.\quad x(\sin{x}-\cos{x})$

well just by looking at it because $dx(x) = 1$

elimanates all the options besides b

$1\cdot \sin (x)+\cos (x)x$ or $\sin (x)+x\cos (x)$

otherwise the gymnastics of the product rule

$uv'+u'v$

If $y=x \sin x,$ then $\dfrac{dy}{dx}=$

$a.\quad\sin{x}+\cos{x}$

$b.\quad\sin{x}+x\cos{x}$

$c.\quad\sin{x}+\cos{x}$

$d.\quad x(\sin{x}+\cos{x})$

$e.\quad x(\sin{x}-\cos{x})$

well just by looking at it because $dx(x) = 1$

elimanates all the options besides b

$1\cdot \sin (x)+\cos (x)x$ or $\sin (x)+x\cos (x)$

otherwise the gymnastics of the product rule

$uv'+u'v$

Last edited: