A Applying a General Lorentz Boost to Multipartite Quantum State

46
2
Summary
How to find unitary transformation corresponding to a general Lorentz transformation, that will perform a change of reference frame on a multipartite quantum state
I would like to apply a General Lorentz Boost to some Multi-partite Quantum State.

I have read several papers (like this) on the theory of boosting quantum states, but I have a hard time applying this theory to concrete examples.

Let us take a ##|\Phi^+\rangle## Bell State as an example, and apply a general Lorentz Boost $$
\Lambda=\left[\begin{array}{cccc}{\gamma} & {-\gamma \beta_{x}} & {-\gamma \beta_{y}} & {-\gamma \beta_{z}} \\ {-\gamma \beta_{x}} & {1+(\gamma-1) \frac{\beta_{x}^{2}}{\beta^{2}}} & {(\gamma-1) \frac{\beta_{x} \beta_{y}}{\beta^{2}}} & {(\gamma-1) \frac{\beta_{x} \beta_{z}}{\beta^{2}}} \\ {-\gamma \beta_{y}} & {(\gamma-1) \frac{\beta_{y} \beta_{x}}{\beta^{2}}} & {1+(\gamma-1) \frac{\beta_{y}^{2}}{\beta^{2}}} & {(\gamma-1) \frac{\beta_{y} \beta_{z}}{\beta^{2}}} \\ {-\gamma \beta_{z}} & {(\gamma-1) \frac{\beta_{z} \beta_{x}}{\beta^{2}}} & {(\gamma-1) \frac{\beta_{z} \beta_{y}}{\beta^{2}}} & {1+(\gamma-1) \frac{\beta_{z}^{2}}{\beta^{2}}}\end{array}\right]
$$ to this state.

Now, as I understand, we represent this Lorentz Boost as some unitary ##U(\Lambda)## in our Hilbert Space, in order to be able to boost our quantum state:$$|\Phi^{+'}\rangle=U(\Lambda)|\Phi^+\rangle$$

Unfortunately, I have found no paper that detailes just how exactly this unitary is found, they all simply state that it must always exist.

So, how would I find ##U(\Lambda)## that boosts some quantum state – like ##|\Phi^+\rangle## – from some inertial frame of reference ##S## to another ##S'##?

Thanks!
 
592
81
It depends on the Hilbert space you’re working with. If it’s a Fock space then in the momentum basis the representation of the lorentz boosts simply boost the three momentums the usual way. If your particles have spin it’s more complicated and you need to boost the polarization states as well. There are partial discussions in Peskin and Schroeder for the spin-0 and 1/2 cases.
 
1,707
37
@HomogeneousCow: Your described action of boosts on the momenta and spins of particles is valid only in systems of non-interacting particles. When particles interact with each other, then the boost generator becomes interaction-dependent (in a sense, similar to the interaction-dependent Hamiltonian).
This is true for interacting dynamics in the instant form, as explained in

P. A. M. Dirac, "Forms of relativistic dynamics", Rev. Mod. Phys. 21 (1949), 392.

Eugen.
 

Want to reply to this thread?

"Applying a General Lorentz Boost to Multipartite Quantum State" You must log in or register to reply here.

Related Threads for: Applying a General Lorentz Boost to Multipartite Quantum State

  • Posted
Replies
10
Views
11K
Replies
1
Views
519
Replies
2
Views
4K
  • Posted
Replies
3
Views
1K
Replies
11
Views
1K
  • Posted
Replies
5
Views
2K
  • Posted
Replies
3
Views
2K
  • Posted
Replies
5
Views
5K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top