Applying Newton's laws

  • Thread starter Anood
  • Start date
  • #1
Anood
14
0
a)In terms of theta,µk and w calculate F.
b)for w=400 N and µk=.25, calculate F and theta ranging from 0 to 90 in
increments of 10.Graph F versus theta.
c)From the general expression in part (a) calculate the value of theta for which
the value of F, required to maintain constatnt speed, is a minimum.(Hint: At a
point where a function is minimum, what are the first and second derivatives of
the function? Here F is a function of theta.)for the special case of w=400 N and
µk=.25,evaluate this optimal theta and compare your result to the graph you
constructed in part b.


Homework Equations



i need help with part c

c)From the general expression in part (a) calculate the value of theta for which
the value of F, required to maintain constatnt speed, is a minimum.(Hint: At a
point where a function is minimum, what are the first and second derivatives of
the function? Here F is a function of theta.)for the special case of w=400 N and
µk=.25,evaluate this optimal theta and compare your result to the graph you
constructed in part b.


The Attempt at a Solution



this is the solution for part a:
F = µk*w / (cos(theta) + µk*sin(theta))

the problem is that i don't know how to get the dervitives in order to solve part c
 

Answers and Replies

  • #2
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Just differentiate F with respect to the angle once first. What do you get?
 
  • #3
Anood
14
0
df/dtheta= w*uk*[-sin(theta)+uk*cos(theta)]/[cos(theta)+uk*sin(theta)]^2
 
  • #4
Anood
14
0
is what i did right? i mean squring the denomenator?
 
  • #5
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Indeed!
So, where can the extrema of F wrt. to the angle occur?

EDIT:
You should have a minus in front of the whole expression.
 
  • #6
Anood
14
0
i don't think there must be a minus in front of the whole expression.

what do u mean by where can the extrema of F wrt?
 
  • #7
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Oh yes, it should!
[tex]\frac{d}{dx}\frac{1}{u(x)}=-\frac{u'(x)}{(u(x))^{2}}[/tex]
by elementary application of the chain rule.

What does "extrema" of a function refer to?
 
  • #8
Anood
14
0
is it that i have to set it equal to zero and solve for theta?
 
  • #9
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
is it that i have to set it equal to zero and solve for theta?

Extreme values of a function consist of the function's minima and maxima.
So yes, setting the expression for the derivative equal to zero, and solving for the angles lying strictly betwen 0 and 90 will give you the extrema in the interior of the reigon.
Afterwards, you must determine whether this is a local minimum or maximum.
 
  • #10
Anood
14
0
shouldn't i first take the 2nd dervitive?
 
  • #11
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Why?
Can't you just determine first the simple fact that the critical point of f happens at the angle [itex]\theta_{m}[/itex], which satisfies the equation:
[tex]\tan(\theta_{m})=\mu_{k}[/tex]
To simplify computation of the 2.derivative, remember that AT this critical value, the expression in the 1.derivative's numerator is zero.
Hence, any term in the 2.derivative that gets multiplied by that numerator expression will disappear when inserting [itex]\theta_{m}[/itex]
 
  • #12
Anood
14
0
i'm a bit confused. Can you simplify your explanation please?
 
  • #13
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Well, start with determining the critical value, i.e, where the derivative of f is 0
 
  • #14
Anood
14
0
w*uk*[sin(theta)-uk*cos(theta)]/[cos(theta)+uk*sin(theta)]^2=0

i couldn't solve for theta it's very complicated. Need your help!
 
  • #15
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Well, multply both sides with the denominator.
 
  • #16
Anood
14
0
i see now how we get [tex]\tan(\theta_{m})=\mu_{k}[/tex]
what's next?
 
  • #17
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Now, remember that [itex]-\sin\theta_{m}+\mu_{k}\cos\theta_{m}=0[/itex]
Remember when you use the rule of fractions when differentiating, one of the terms in the numerator will have as a factor the derivative of the denominator.

However, when evaluated at [itex]\theta=\theta_{k}[/itex], that derivative is, of course, 0. Therefore, that term in the 2.derivative's numerator vanishes.

Thus, in order to evaluate the second derivative at [itex]\theta=\theta_{k}[/itex], just keep the term including the derivative of the numerator.
 
  • #18
Anood
14
0
i don't get the follwing line:
Thus, in order to evaluate the second derivative at [itex]\theta=\theta_{k}[/itex]
, just keep the term including the derivative of the numerator
 
  • #19
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
Well, just find the 2.derivative, then!
Afterwards, do not multiply out parentheses before inserting [itex]\theta_{k}[/itex], and see what simplifications occur.
 
  • #20
Anood
14
0
what's the dervitaive of u'(x)/u(x)
 
  • #21
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
That, you should find out by yourself.
Do you understand what expression u(x) stands for?
 
  • #22
Anood
14
0
it's (n) *u(x)^(n-1) right?
 
  • #23
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,089
135
No, think again.
 
  • #24
Anood
14
0
the 2nd dervitive is the following;

[cos(theta)+uk*sin(theta)]^2*(w*uk*[cos(theta)-uk*cos(theta)-sin(theta)-uk*sin(theta)]/([cos(theta)+uk*sin(theta)]^2)^2
 

Suggested for: Applying Newton's laws

  • Last Post
Replies
7
Views
355
Replies
73
Views
2K
Replies
9
Views
579
Replies
2
Views
395
Replies
8
Views
380
Replies
8
Views
574
Replies
28
Views
596
  • Last Post
Replies
6
Views
669
Replies
37
Views
990
Top