Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Approximate integration

  1. Feb 6, 2005 #1
    I have two similar problems. I need to show that

    1. [tex] \frac{1}{2} \left( T_n + M_n \right) = T_{2n} [/tex]

    2. [tex] \frac{1}{3} T_n + \frac{2}{3} M_n = S_{2n} [/tex]

    where:

    [tex]T[/tex] is the Trapezoidal rule.

    [tex]M[/tex] is the Midpoint rule.

    [tex]S[/tex] is Simpson's rule.

    This is what I've got:

    [tex]T_n = \frac{b-a}{2n}\left[ f\left( x_0 \right) + 2f\left( x_1 \right) + 2f\left( x_2 \right) + \dots + 2f\left( x_{n-2} \right) + 2f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]

    [tex]T_{2n} = \frac{b-a}{4n}\left[ f\left( x_0 \right) + 2f\left( x_2 \right) + 2f\left( x_4 \right) + \dots + 2f\left( x_{2n-2} \right) + 2f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]

    [tex]M_n = \frac{b-a}{n}\left[ f\left( \bar{x}_1 \right) + f\left( \bar{x}_2 \right) + f\left( \bar{x}_3 \right) + \dots + f\left( \bar{x}_{n} \right) \right][/tex]

    [tex]S_n = \frac{b-a}{3n}\left[ f\left( x_0 \right) + 4f\left( x_1 \right) + 2f\left( x_2 \right) + 4f\left( x_3 \right) + \dots + 4f\left( x_{n-3} \right) + 2f\left( x_{n-2} \right) + 4f\left( x_{n-1} \right) + f\left( x_{n} \right) \right][/tex]

    [tex]S_{2n} = \frac{b-a}{6n}\left[ f\left( x_0 \right) + 4f\left( x_2 \right) + 2f\left( x_4 \right) + 4f\left( x_6 \right) + \dots + 4f\left( x_{2n-3} \right) + 2f\left( x_{2n-2} \right) + 4f\left( x_{2n-1} \right) + f\left( x_{2n} \right) \right][/tex]

    The main difficulty I've had is to deal with the [tex]f\left( \bar{x}_{n} \right)[/tex] terms, since I can't see a way to combine them with the [tex]f\left( x_{n} \right)[/tex] ones.

    Any help is highly appreciated.
     
  2. jcsd
  3. Feb 6, 2005 #2

    Integral

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Express your points [itex] x_0, x_1, ..., x_n [/itex] in terms of the lower limit and the step. So the step is:

    [tex]h= \frac {b -a} n[/tex]

    [tex] x_0 = a [/tex]
    [tex] x_1 = a + h [/tex]
    .
    .
    .
    [tex]x_n = a + nh [/tex]

    Can you do the same for the [itex] \bar {x}_n [/itex]

    You may want to use different symbols for the evaluation points of the different methods. This will help you to deal with the fact that [itex] x_n [/itex] is not the same point for the different methods. Once you have worked out the actual values, in terms af a and h you should be home free.
     
  4. Feb 7, 2005 #3
    Thank you for the tips!!!

    I think I've found the solution to both problems. Here's what I have:

    [tex]T_n = \frac{h}{2}\left\{ f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f\left[ a + (n-2)h \right] + 2f\left[ a + (n-1)h \right] + f\left( a + nh \right) \right\}[/tex]

    [tex]T_{2n} = \frac{h}{4}\left\{ f(a) + 2 f\left( a + \frac{h}{2} \right) + 2 f\left( a + h \right) + 2 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a + \frac{(2n-1)h}{2} \right] + f\left( a + nh \right) \right\}[/tex]

    [tex]M_n = h \left\{ f\left( a + \frac{h}{2} \right) + f\left( a + \frac{3h}{2} \right) + f\left( a + \frac{5h}{2} \right) + \dots + f\left[ a + \frac{(2n-3)h}{2} \right] + f\left[ a + \frac{(2n-2)h}{2} \right] + f\left[ a + \frac{(2n-1)h}{2} \right] \right\}[/tex]

    [tex]S_n = \frac{h}{3}\left\{ f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \dots + 4 f\left[ a+(n-3)h \right] + 2 f\left[ a+(n-2)h \right] + 4 f\left[ a+(n-1)h \right] + f(a+nh) \right\}[/tex]

    [tex]S_{2n} = \frac{h}{6} \left\{ f(a) + 4 f\left( a + \frac{h}{2} \right) + 2f(a+h) + 4 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a+\frac{(2n-2)h}{2} \right] + 4 f\left[ a+\frac{(2n-1)h}{2} \right] + f(a+nh) \right\}[/tex]

    To make things a bit simpler, I write them in shorthand notation:

    [tex]T_n = \frac{h}{2}\alpha[/tex]

    [tex]T_{2n} = \frac{h}{4}\beta[/tex]

    [tex]M_n = h \gamma[/tex]

    [tex]S_n = \frac{h}{3}\theta[/tex]

    [tex]S_{2n} = \frac{h}{6}\lambda[/tex]

    So, we have:

    1. [tex]\frac{1}{2}\left( T_n + M_n \right) = T_{2n}[/tex]

    [tex]\frac{1}{2} \left( \frac{h}{2} \alpha + h \gamma \right) = \frac{h}{4}\beta[/tex]

    [tex]\frac{h}{2} \left( \frac{1}{2} \alpha + \gamma \right) = \frac{h}{4}\beta[/tex]

    [tex]\frac{1}{2}\alpha + \gamma = \frac{1}{2}\beta[/tex]

    Thus, we find

    [tex]\frac{1}{2} f(a) + f(a+h) + f(a+2h) + \dots + f\left[ a + (n-2)h \right] + f\left[ a + (n-1)h \right] + \frac{1}{2} f\left( a + nh \right)[/tex]​

    [tex]+[/tex]​

    [tex]f\left( a + \frac{h}{2} \right) + f\left( a + \frac{3h}{2} \right) + f\left( a + \frac{5h}{2} \right) + \dots + f\left[ a + \frac{(2n-1)h}{2} \right][/tex]​


    [tex]=[/tex]​

    [tex]\frac{1}{2} f(a) + f\left( a + \frac{h}{2} \right) + f(a+h) + f\left( a + \frac{3h}{2} \right) + \dots + f\left[ a + \frac{(2n-1)h}{2} \right] + \frac{1}{2} f\left( a + nh \right) [/tex]​

    which verifies the first relationship.

    2. [tex]\frac{1}{3}T_n + \frac{2}{3}M_n = S_{2n}[/tex]

    [tex]\frac{1}{3}\left( \frac{h}{2}\alpha \right) + \frac{2}{3}(h\gamma ) = \frac{h}{6}\lambda [/tex]

    [tex]\frac{h}{6}\alpha + \frac{2h}{3}\gamma = \frac{h}{6}\lambda [/tex]

    [tex]\frac{h}{6} \left( \alpha + 4\gamma \right) = \frac{h}{6}\lambda [/tex]

    [tex]\alpha + 4\gamma = \lambda [/tex]

    Thus, we find

    [tex]f(a) + 2f(a+h) + 2f(a+2h) + \dots + 2f\left[ a + (n-2)h \right] + 2f\left[ a + (n-1)h \right] + f\left( a + nh \right)[/tex]​

    [tex]+[/tex]​

    [tex]4f\left( a + \frac{h}{2} \right) + 4f\left( a + \frac{3h}{2} \right) + 4f\left( a + \frac{5h}{2} \right) + \dots + 4f\left[ a + \frac{(2n-3)h}{2} \right] + 4f\left[ a + \frac{(2n-2)h}{2} \right] + 4f\left[ a + \frac{(2n-1)h}{2} \right][/tex]​

    [tex]=[/tex]​

    [tex]f(a) + 4 f\left( a + \frac{h}{2} \right) + 2f(a+h) + 4 f\left( a + \frac{3h}{2} \right) + \dots + 2 f\left[ a+\frac{(2n-2)h}{2} \right] + 4 f\left[ a+\frac{(2n-1)h}{2} \right] + f(a+nh)[/tex]​

    which verifies the second relationship.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook