(adsbygoogle = window.adsbygoogle || []).push({}); 1Find the area bounded by the curve [tex] x = t - \frac{1}{t} [/tex], [tex] y = t + \frac{1}{t} [/tex] and the line [tex] y = 2.5 [/tex].

I know that [tex] A = \int_{\alpha}^{\beta} g(t)f'(t) \; dt [/tex]

I ended up with [tex] \int_{1}^{2} 2.5-(t+\frac{1}{t})(1+\frac{1}{t^{2}}) [/tex]

2Find the length of the curve: [tex] x = a(\cos \theta + \theta \sin \theta) [/tex], [tex] y = a(\sin \theta-\theta \cos \theta) [/tex], [tex] 0\leq \theta\leq \pi [/tex]

I obtained [tex] \frac{a\pi^{2}}{2} [/tex]. Does this look correct? I used the arc length formula for parametric equations.

Is this correct?

3Find the surface area obtained by rotating the given curve about the x-axis: [tex] x = 3t-t^{3} [/tex] [tex] y = 3t^{2} [/tex], [tex] 0\leq t\leq 1 [/tex].

So [tex] S = \int_{a}^{b} 2\pi y \sqrt{(\frac{dx}{dt}^{2})+(\frac{dy}{dt}^{2})} \; dt [/tex]

So would I do the following: [tex] \int_{0}^{1} 2\pi(3t^{2})\sqrt{(3-3t^{2})+36t^{2}} \; dt [/tex]?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Arc length formula help

**Physics Forums | Science Articles, Homework Help, Discussion**