Find a function F(x) whose arc length L(x) from (1,1/2) to (x,F(x)), x>1 is (1/2)x^2 + (1/4)Ln(x).(adsbygoogle = window.adsbygoogle || []).push({});

First some short hand notation.

Int[f(x),dx], means the indefinite integral of the function f(x).

Int[f(x),dx,a,b], means the definite integral where a is the lower bound and b is the upper bound.

d/(dx)[f(x)], is the derivate of f(x).

Sqrt[f(x)], is the square root of f(x).

Basically I am trying to follow Mathematica conventions and adding a touch of Leibniz to it.

Ok, now here is what I have done and where I am at thus far.

Arc length formula is Int[Sqrt[1+(d/dt)[f(t)]^2],dt,a,x]

So I have Int[Sqrt[1+((d/dt)[f(t)])^2],dt,1,x] = (1/2)x^2 + (1/4)Ln(x)

So by the FTC I can say that

d/(dx)[(1/2)x^2 + (1/4)Ln(x)] = Sqrt[1+(d/dt)[f(t)]^2]

Which is

x + 1/(4x) = Sqrt[1+(d/dt)[f(t)]^2]

Squaring both sides I have

(x + 1/(4x))^2 = abs[1+(d/dt)[f(t)]^2]

I drop the absolute value here so I have.

(x + 1/(4x))^2 = 1+(d/dt)[f(t)]^2

x^2 + 1/2 + (1/(4x))^2 = 1+(d/dt)[f(t)]^2

Subtracting 1 from both sides and factoring the RHS

(x - 1/(4x))^2 = ((d/dt)[f(t)])^2

Taking square root of both sides and discarding the absolute value I have.

(d/dt)[f(t)] = x - 1/(4x)

Integrating both sides I get.

f(x) =(1/2)x^2 - (1/4)Ln(x) +c

I use the point (1,(1/2)) that is given to find c. Thus c = 0.

Seems ok, right?

Well that means that if I put f(x) back into my arc length formula I should get back to the given function.

Ok.... Did that and now I have an extra -(1/2) on my function? What am I missing here? One thing to notice is

Int[Sqrt[1+((d/dt)[f(t)])^2],dt,1,x] = (1/2)x^2 + (1/4)Ln(x)

When x=1 you have 0 = 1/2

Of course the restriction was x>1

Any help would be great, thanks.

cheers

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Arc Length formula

Loading...

**Physics Forums - The Fusion of Science and Community**