I am trying to figure out the exact meaning of the concepts of 4-vector and relativistic tensor in the Minkowski spacetime. In my understanding, a tensor is a map that assigns an array of numbers to each basis in such a way that certain transformation rules apply. A vector can be viewed as a special case. Relativists define a 4-vector or a relativistic tensor as an object that transforms correctly under the Lorentz transformations.(adsbygoogle = window.adsbygoogle || []).push({});

So far so good. I pick a basis and assign it an array of numbers. I then pick another basis that can be obtained by a Lorentz transform and compute a new array of numbers.

However, what happens if I pick a basis that cannot be obtained through a Lorentz transform? Is the array undefined? Or is it arbitrary? One way or other, can the relativistic tensor (or 4-vector) be called a mathematical tensor (or vector), considering it does not transform correctly under GL(n,R), but only under a subgroup?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Are 4-vectors vectors?

Loading...

Similar Threads - vectors vectors | Date |
---|---|

I Basic Q about Vector/tensor definition and velocity | Feb 24, 2018 |

I What is the covariant derivative of the position vector? | Feb 18, 2018 |

A Pushforward of Smooth Vector Fields | Jan 12, 2018 |

A Can I find a smooth vector field on the patches of a torus? | Oct 9, 2017 |

A Pushing forward a vector field | Oct 4, 2017 |

**Physics Forums - The Fusion of Science and Community**