- #1
- 489
- 189
When we encounter particle-collision problems that call for invoking the conservation of four-momentum, are we tacitly assuming a field-free idealization (or at least negligible potential energy)?
For example, say particles 1 and 2 collide elastically. Then the conservation of four-momentum says:
$$\mathbf{P}_{1,i} + \mathbf{P}_{2,i} = \mathbf{P}_{1,f}+ \mathbf{P}_{2,f}$$ (where ##i## means initial and ##f## means final).
But in reality, there's potential energy associated with the (changing) relative positions of the particles, isn't there? So to express the full picture, would we add ##\mathbf{P}_{\textrm{field},i}## to the left side and ##\mathbf{P}_{\textrm{field},f}## to the right side?
For example, say particles 1 and 2 collide elastically. Then the conservation of four-momentum says:
$$\mathbf{P}_{1,i} + \mathbf{P}_{2,i} = \mathbf{P}_{1,f}+ \mathbf{P}_{2,f}$$ (where ##i## means initial and ##f## means final).
But in reality, there's potential energy associated with the (changing) relative positions of the particles, isn't there? So to express the full picture, would we add ##\mathbf{P}_{\textrm{field},i}## to the left side and ##\mathbf{P}_{\textrm{field},f}## to the right side?