- #1

- 492

- 0

## Main Question or Discussion Point

this is a question i have i mean are RH and Goldbach conjecture related? i mean in the sense that proving RH would imply Goldbach conjecture and viceversa:

RIemann hypothesis: (RH)

[tex]\zeta(s)=0 [/tex] then [tex]s=1/2+it [/tex]

Goldbach conjecture,let be n a positive integer then:

[tex]2n=p1+p2 [/tex] , [tex]2n+1=p3+p4+p5 [/tex]

with p1,p2,p3,p4 and p5 prime numbers...

Another question is there a generating function for the number of ways a natural number can be split into a sum of r-primes?....

this would be interesting because if existed with r=2 and r=3 it would aid to prove Goldbach conjecture..

RIemann hypothesis: (RH)

[tex]\zeta(s)=0 [/tex] then [tex]s=1/2+it [/tex]

Goldbach conjecture,let be n a positive integer then:

[tex]2n=p1+p2 [/tex] , [tex]2n+1=p3+p4+p5 [/tex]

with p1,p2,p3,p4 and p5 prime numbers...

Another question is there a generating function for the number of ways a natural number can be split into a sum of r-primes?....

this would be interesting because if existed with r=2 and r=3 it would aid to prove Goldbach conjecture..