- #1

Mathman23

- 254

- 0

Hi

I have this following problem:

Two matrix equations are given

[tex]C^{T} X = K \ \ Y C^{T} = K[/tex]

where K, X,Y and C are square matrices. If I want to calculate X in equation 1 and Y in equation 2 I multiply with [tex]{C^{T}}^{(-1)}[/tex] one both sides of each equation.

The resulting matrix X in equation is still equal to Matrix Y in equation two ??

/Fred

I have this following problem:

Two matrix equations are given

[tex]C^{T} X = K \ \ Y C^{T} = K[/tex]

where K, X,Y and C are square matrices. If I want to calculate X in equation 1 and Y in equation 2 I multiply with [tex]{C^{T}}^{(-1)}[/tex] one both sides of each equation.

The resulting matrix X in equation is still equal to Matrix Y in equation two ??

/Fred

Last edited: