- #1
- 688
- 210
- Homework Statement
- Find the area of the region inside the circle ##r=-2\sin\theta## and outside the circle ##r=1##.
- Relevant Equations
- $$A=\frac 12\int_{\theta_1}^{\theta_2}(r^2-r^2_0)d\theta$$
$$-2\sin\theta=1\Leftrightarrow\theta=-\frac{\pi}{6},\,-\frac{5\pi}{6}\\
\begin{align*}
\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12\left(4\sin^2\theta-1\right)d\theta
&=\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12\left(1-2\cos2\theta\right)d\theta\\
&=\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12d\theta-\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\cos2\theta d\theta\\
&=\frac 12\left[\theta-\sin2\theta\right]_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\\
&=-\frac{5\pi}{12}-\frac{\sqrt 3}{4}+\frac{\pi}{12}-\frac{\sqrt 3}{4}\\
&=-\frac{\pi}{3}-\frac{\sqrt 3}{2}
\end{align*}\\
A=\frac{\pi}{3}+\frac{\sqrt 3}{2}$$
\begin{align*}
\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12\left(4\sin^2\theta-1\right)d\theta
&=\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12\left(1-2\cos2\theta\right)d\theta\\
&=\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\frac 12d\theta-\int_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\cos2\theta d\theta\\
&=\frac 12\left[\theta-\sin2\theta\right]_{-\frac{\pi}{6}}^{-\frac{5\pi}{6}}\\
&=-\frac{5\pi}{12}-\frac{\sqrt 3}{4}+\frac{\pi}{12}-\frac{\sqrt 3}{4}\\
&=-\frac{\pi}{3}-\frac{\sqrt 3}{2}
\end{align*}\\
A=\frac{\pi}{3}+\frac{\sqrt 3}{2}$$
Attachments
Last edited: