Hi everybody,(adsbygoogle = window.adsbygoogle || []).push({});

I have a question about the proof that the area of a square is a^2. I have read that we use these axioms do define area:

1) Equal polygon surfaces have the same(equal) area.

2)if we divide a polygon surface in a finite number of separate surfaces then the total area is equal to the sum of these smaller areas

3)the area of a square with side length 1 is 1

Sorry for the bad English but it's not my mother-tongue.

I have also checked in the book I have about Geometry that we use the fact that the area of a square of side length a is a^2 to prove many other formulas. However, the book omits this proof. So I would like some help in this.

I have made the following thoughts:

If the side length of a square is rational number a, then a=p/q ,p,q naturals. So if S is the area of our square, we can create a square of are S' of side length c=a*q. Then we easily prove that it can be divided into q^2 smaller squares of the same area as the initial one. So from axiom 2 we can say that (q^2)*S=S'. Also c is natural as it's equal to p so the "new" square can also be divided into p^2 squares of side length 1. So from axioms 2 and 3 we get that (p^2)*1=S'.

So we get that S*(q^2)=p^2 => S=(p/q)^2=a^2.

I think the above are correct. What do u think? I can't however think of any solution for the case that the side length is irrational. Any help would be appreciated.

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Area of square proof

**Physics Forums | Science Articles, Homework Help, Discussion**