When I learned about volumes of solids of revolution, I never really memorized any formulas for specific cases per se. I used two expressions for area, either ##A = \pi (R^2 - r^2)## and ##A = 2\pi r h##.(adsbygoogle = window.adsbygoogle || []).push({});

Those expressions worked for rotations aboutanyhorizontal/vertical axis (not necessarily ##x## or ##y##) and for all functions.

Now I'm learning about areas of surfaces of revolution, but all the "formulas" or integrals online seem to be solely for rotations about one of the axes (##x## or ##y##). Is it possible to use a formula that is less specific, for instance, ##2\pi r## for the circumference? This would work for all rotations and it does not obscure the essence of deriving formulas for areas of surfaces of revolution. Also, in the "washer" (for lack of a better word) case, aren't we supposed to add the areas, unlike the volume case where we had to "subtract the volumes"? It seems very obvious to be, but I wanted to make sure since there is no reference to this particular case online.

Thank you in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Area of surface of revolution

**Physics Forums | Science Articles, Homework Help, Discussion**