hello all(adsbygoogle = window.adsbygoogle || []).push({});

i have been trying to prove a property of integrable functions, i had a go at it dont know if it is correct, but im wondering if there could possibly be a shorter simpler way of proving it alright here we go

[tex]\int_{a}^{b} f(x)+g(x) dx= \int_{a}^{b} f(x)dx +\int_{a}^{b} g(x) dx[/tex]

My proof

for any partition P of [a,b]

[tex]U(f+g,P)=\sum_{i=1}^{n}M_i(f+g,P)(x_i-x_{i-1})[/tex]

[tex]\le \sum_{i=1}^{n}M_i(f,P)(x_i-x_{i-1}) +\sum_{i=1}^{n}M_i(f,P)(x_i-x_{i-1}) [/tex]

[tex]= U(f,P)+U(f,g) [/tex] similarly

[tex]L(f+g,P)\ge L(f,P)+L(f,g)[/tex]

there is also partitions [tex] P_{1} [/tex] & [tex] P_{2} [/tex] of [a,b] such that

[tex] U(f,P_{1}) <\int_{a}^{b}f+\frac{\epsilon}{2} [/tex]

[tex] U(g,P_{2}) <\int_{a}^{b}g+\frac{\epsilon}{2} [/tex]

we let [tex] P=P_{1}UP_{2}[/tex]

[tex]\int_{a}^{b^U}(f+g)\le U(f+g,P)\le U(f,P)+U(g,P) \le U(f,P_{1})+U(g,P_{2})[/tex]

[tex]< \int_{a}^{b}f+\frac{\epsilon}{2}+\int_{a}^{b}g+\frac{\epsilon}{2}[/tex]

[tex]= \int_{a}^{b}f+\int_{a}^{b}g+\epsilon [/tex]

similarly

[tex]\int_{a_{L}}^{b}(f+g) > \int_{a}^{b}f+\int_{a}^{b}g -\epsilon [/tex]

since all functions are riemann integrable then

[tex]\int_{a}^{b^U}(f+g) =\int_{a_{L}}^{b}(f+g)= \int_{a}^{b}(f+g) [/tex]

and so it follows that

[tex]\mid\int_{a}^{b}(f+g)-\int_{a}^{b}f-\int_{a}^{b}g\mid<\epsilon[/tex] [tex]\forall\epsilon>0[/tex]

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Arithmetic of of integrable functions

Loading...

Similar Threads - Arithmetic integrable functions | Date |
---|---|

Convert this arithmetic to calculus | Nov 10, 2013 |

Summing up an Arithmetic Progression via Integration? | Jul 12, 2011 |

Integration of Modular Arithmetic Functions | Jul 6, 2011 |

Arithmetic-geometric mean | Jun 18, 2011 |

Arithmetic sequences in R^2.? | Mar 15, 2010 |

**Physics Forums - The Fusion of Science and Community**