Asia Pacific Center for Theoretical Physics starts a new LQG group

In summary, Hanno Sahlmann has announced the formation of a new LQG group at the APCTP in Korea. This group has postdoc and PhD student positions to be filled by this fall. Sahlmann is a well-known expert in LQG and holds a faculty position at Karlsruhe. He will lead the new LQG group at Pohang. There has been a recent growth in LQG groups, with several new groups being established and existing groups adding permanent positions. This trend is due to a "Loop diaspora" in progress, as seen by the movement of prominent researchers such as Thiemann from AEI to University of Erlangen. The success of AEI as a QG research
  • #1
marcus
Science Advisor
Gold Member
Dearly Missed
24,775
792
Hanno Sahlmann has announced the formation of a new LQG group, at the APCTP in Korea. There are postdoc and PhD student positions to be filled and he indicates he would like to get them filled by this fall (which is fast approaching!)

sahlmann@particle.skipthis.uni-karlsruhe.andthis.de

Sahlmann is the S in the well-known L.O.S.T theorem which established, under fairly general assumptions, uniqueness of the holonomy/flux state space. If I'm not mistaken, his PhD advisor was Thiemann at the Einstein Institute (the T in L.O.S.T). As I recall, Sahlmann postdoc'd with Ashtekar 2003-2005 and at Utrecht 2006-2008 with Renate Loll. Since 2008 he holds a faculty position at Karlsruhe. It looks like he will lead the new LQG group.

I see that Spires lists PhD advisors:
http://www.slac.stanford.edu/spires/find/hepnames/www?phdadv=Thiemann,+Thomas

Several new LQG groups have been established in the past couple of years---and previous groups have added permanent positions. 2008-2010 seems to have been a time of growth for the field. Probably the reasons for this are complicated---I'm not sure there is a single explanation.

To illustrate how many more Lqg venues there are now than there were a few years back, I will copy from Francesca's map. In some cases I think the primary interest of the permanent faculty listed here is in a neighboring field, but I guess it would be possible to do a Loop PhD thesis with almost any of those listed as your advisor.

AEI Berlin
Permanents: Bianca Dittrich, Daniele Oriti, Hermann Nicolai. http://www.aei.mpg.de/english/research/teams/

CPT Marseille
Permanents: Alejandro Perez, Carlo Rovelli, Simone Speziale. http://www.cpt.univ-mrs.fr/~quantumgravity/ Postdocs: Eugenio Bianchi, Muxin Han, Christian Roeken, Antonino Marcianò, Marco Valerio Battis...

LSU
Permanents: Kristina Giesel, Jorge Pullin, Parampreet Singh. http://relativity.phys.lsu.edu/

QG Nottingham
Permanents: John Barrett, Kirill Krasnov, Jorma Louko. http://www.maths.nottingham.ac.uk/research/applied_mathematics/quantum_gravity/
(Affiliated: Ed Copeland http://www.nottingham.ac.uk/physics/research/particles/)

Morelia
Permanents: Alejandro Corichi, Robert Oeckl, José Zapata. http://www.matmor.unam.mx/~corichi/lqgindex.html

PennState
Permanents: Abhay Ashtekar, Martin Bojowald. Postdocs:Claudio Perini,Elena Magliaro,Jacobo Diaz Polo,William Nelson,Simone Mercuri. PhD:Miguel Campiglia, Adam Henderson, Artur Tsobanjan, Edward Wilson...

Erlangen
Permanents: Thomas Thiemann and one more faculty soon! Postdocs: Emanuele Alesci, ... PhD studens: ...

Perimeter Institute for Theoretical Physics
Permanents: Laurent Freidel, Fotini Markopoulou, Lee Smolin.

IEM-QFT Madrid
Permanents: Fernando Barbero, Guillermo Mena Marugán. Postdoc: Tomasz Pawlowski. http://www.iem.csic.es/departamentos/qft/index.html

University of Warsaw
Permanent: Jerzy Lewandowski. http://www.fuw.edu.pl/~lewand/homepage.html

Beijing Normal University
Permanent: Yongge Ma http://physics.bnu.edu.cn/application/research/gravity/LQG/eng/research.html

Universität Hamburg
Permanent: Catherine Meusburger. http://www.math.uni-hamburg.de/home/meusburger/ Postdoc: Winston Fairbain.

Florida Atlantic University
Permanent: Jonathan Engle, Warner Miller.

École normale supérieure de Lyon
Permanent: Etera Livine

Universite De Paris XI Paris Sud
Permanent: Vincent Rivasseau http://www.rivasseau.com/index.html

Tours
Permanent: Karim Noui

Universite Montpellier II
Permanent: Sergei Alexandrov

Grenoble
Permanent: Aurelien Barreau http://lpsc.in2p3.fr/ams/aurelien/

Cinvestav Zacatenco
Permanent: Merced Montesinos

Montevideo
Permanents: Rodolfo Gambini, Michael Reisenberger.

Cambridge
Permanent: Ruth M. Williams

King's College London
Permanent: Mairi Sakellariadou.
http://www.kcl.ac.uk/schools/nms/physics/people/academic/sakellariadou/

UMC Utrecht
Permanent: Renate Loll http://www.phys.uu.nl/~loll/Web/title/title.html

Niels Bohr Instituttet
Permanent: Jan Ambjorn http://www.nbi.ku.dk/english/

Rheinische Friedrich-Wilhelms-Universität
Permanent: Klaus Kiefer

Universität Paderborn
Permanent: Christian Fleischhack

Haverford College
Permanent: Stephon Alexander. Postdoc:Antonino Marcianò.

Western Ontario
Permanents: Daniel Christensen

McMaster University
Permanent: Seth Major. http://academics.hamilton.edu/physics/smajor/

New Brunswick
Permanents: Viqar Husain http://www.math.unb.ca/~husain/

University of Lethbridge
Permanents: Saurya Das, Arundhati Dasgupta, Mark Walton. Post-Doc: Wissam Chemissany. Students: Borislav Belchev, Ahmed Farag Ali, Ali Nassar, Steve Sidhu. http://people.uleth.ca/~saurya.das/TPG/TPG.h ...

Raman Research Institute
Permanent: Madhavan Varadarajan

University of Sydney/Macquarie University
Permanent: Daniel Terno http://www.qscitech.info/ Postdoc: Florian Girelli

American University of Beirut
Permanent: Tamer Tlas.

Kansas State University
Permanent: Louis Crane. http://www.math.ksu.edu/main/contact_info/personnel_detail?person_id=1330

Riverside
Permanent:John Baez. http://math.ucr.edu/home/baez/README.html

Caltech
Permanent: Matilde Marcolli. http://www.its.caltech.edu/~matilde/

Berkeley
Permanent: Robert Littlejohn. http://www.physics.berkeley.edu/research/faculty/littlejohn.html

Pavia
Permanents: Mauro Carfora and Annalisa Marzuoli Students: Hal Haggard and Francesca Vidotto (2011)

Torino
Permanent: Lorenzo Fatibene http://www.dm.unito.it/personalpages/fatibene/index.htm

Sapienza University of Rome
Permanents: Giovanni Montani, Giovanni Amelino Camelia. Giovanni Montani http://www.icra.it/cgm/welcome.htm http://www.roma1.infn.it/~amelino/

Uniwersytet Wrocławski Wydział Fizyki i Astronomii Instytut Fizyki Doświadczalnej
Permanent: Jerzy Kowalski-Glikman.

Uniwersytet Jagielloński Wydział Fizyki Astronomii i Informatyki Stosowanej
Permanent: Marek Szydlowski.

IUCAA Pune
Permanent: Naresh Dadhich

National Cheng Kung University
Permanent: Chopin Soo

Academia Sinica
Permanent: Hoi-Lai Yu

======================
The information for some of these is only partial. It comes from this map:
http://maps.google.com/maps/ms?ie=U...985216139270436.0004843830d27f3e6c50e&t=h&z=0
In any case, Hanno starting a LQG group at Pohang, Korea is not an isolated example. There seems to be a "Loop diaspora" in progress.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
The question came up in another thread "what would it take for Princeton IAS to establish a LQG group?" The question is sociological, but relevant to the progress of science. Science is a community/tradition-based process and can't be understood in isolation from human institutions.

I won't try to answer the "what would it take?" question but it's worth thinking about a related question: how do you recognize a QG research center? Like for example the first item on the above list: AEI Berlin. Also called Einstein Institute at Potsdam (which is just outside Berlin).

I guess the focus needs to be on understanding how change happens. Thiemann just moved from AEI to set up a new QG center at University of Erlangen (famous for Felix Klein's "Erlangen Program" in geometry/group theory). What you see at AEI now is kind of a TEMPLATE or model for what to expect at Erlangen, or at the Asia Pacific center where Thiemann's student Sahlmann is forming a QG group.

Change happens in the list of places which are prominent. For example the heaviest investment in string has been at Princeton and Rutgers. But we hear less and less about Princeton and Rutgers and we hear more and more about AEI, Marseille, Perimeter.Well Einstein Potsdam has 3 relevant research teams:

Canonical and Covariant Dynamics of Quantum Gravity (7 people, Thiemann's student Dittrich is leader)
http://www.aei.mpg.de/english/research/teams/canonicalCovariantDynamics/index.html
http://www.aei.mpg.de/english/research/teams/canonicalCovariantDynamics/members/index.php

Microscopic Quantum Structure & Dynamics of Spacetime (8 people, Oriti is the group leader)
http://www.aei.mpg.de/english/research/teams/microscopicQuantumStructure/index.html
http://www.aei.mpg.de/english/research/teams/microscopicQuantumStructure/members/index.php

Quantum Gravity and Unified Theories (only has two specifically Lqg)
http://www.aei.mpg.de/english/research/teams/quantumGravity/members/index.php

The last here used to be the place for the AEI Loop people, before the two new teams were established. It has Baratin, who got his PhD with Freidel, and is now postdoc---and Tambornino, a PhD student of Dittrich. Most of the specifically Lqg people at the Potsdam Einstein Institute are now in the first two research teams.

The point is that one should not be looking for the appearance of institutional set-ups labeled "LQG". Look at the team names:
"dynamics of quantum gravity"
"microscopic dynamics of spacetime"

Whatever it takes for Princeton to set up a LQG research group has already happened, but Princeton is stuck and can't move. In effect, AEI is the new "Princeton IAS". It has taken the lead while the IAS is immobilized by its investment in people who are getting old (and who study stuff that is getting old.)
The new AEI research team titles do not say "LQG". They simply say quantum gravity, or words to that effect. You have to click on the links and look closer to see where it says Lqg, usually in the first paragraph of the mission statement.
 
Last edited by a moderator:
  • #3
To get a better understanding of how change takes place in Academia we should look at what IAS Princeton is actually doing.
What it looks like is a quiet gradual de-emphasis of string and a shift of their HEP emphasis into phenomology relevant to LHC.

Last year they brought in Nima Arkani-Hamed, and Nima has proposed a program to retrain some young string people and get them into more LHC-relevant research. He got an NSF grant that is partly for that purpose. Here's a November 2009 report on those trends.

== http://www.math.columbia.edu/~woit/wordpress/?p=2447 ==
Since the late eighties, the two institutions in the US most heavily invested in string theory have been Princeton and Rutgers. Recently they have been moving aggressively to try and diversify, especially in the direction of LHC phenomenology, with the hiring of Nima Arkani-Hamed at the IAS and Matt Strassler at Rutgers. Last year the two institutions collaborated on a proposal for a new Physics Frontier Center with a budget of $1 million or so per year. This would be called the PARTICLE Center (Princeton And Rutgers Theory Institute for Collaboration with LHC Experiments) and would aim to be the main US center for LHC phenomenology. The proposal promoted the possibility of experimental anomalies to be discovered by the LHC in fall 2009, quickly followed by PARTICLE physicists inventing a model that would explain the data and predict a subtle effect that would require a new triggering strategy to see. The result of this would be a surprising measurement that would explain supersymmetry breaking.

Anyway, that proposal doesn’t appear to have been funded, with reviewers rather dubious about the idea of retraining Princeton and Rutgers string theorists as LHC phenomenologists, as well as the idea of devoting significant new resources to funding the Princeton and Rutgers theory groups, centralizing LHC phenomenology efforts there. However, two new year-long grants for $130,000 each were awarded to Strassler and Arkani-Hamed, who promise to use them to “create the nucleus of an LHC center on the East Coast” at Princeton and Rutgers. One of the goals of these grants is listed as “to help in the process of … retraining postdocs from more formal areas of high-energy theory”, since the job market for young string theorists has more or less collapsed.
==endquote==

The key phrase here is retraining postdocs. Institution inertia has to do with investment in human capital.

Some NEW research centers are poised to take the lead in fundamental physics, and are able to move faster, because they are not so heavily invested in string researchers.
What the older institutions need to work on is gradually shifting emphasis and bit-by-bit redirecting their focus.

Whatever happens in Academia-USA will happen slowly and will not have a visible "LQG" headline.
For example one thing is the slow gain in prestige of a place like Penn State. You saw the funding of a big new intitute there last year: Ashtekar's IGC (Institute for Gravitation and Cosmology.) There is no visible "LQG" flag being waved, but we know the kind of research they do and the people that come out of there. And the place has been gaining in prominence.

Also we have to read the code: what Nima said about getting out of "the more formal areas of high-energy theory" means getting out of string. The older universities with a heavier pre-committment cannot immediately set up new QG groups--that's institutionally too big a jump for their people--first they have to find some way to retrain/redirect the researchers they have already.
 
Last edited:
  • #4
What are the underlying physical reasons for the rapid expansion of LQG research in the past few years, say since 2005?

I think one important reason is that it has come to be recognized as the leading form of manifold-less QG where one knows how to calculate.

Of course there is no sharp border between LQG/spinfoam and group field theory (as pursued by Oriti's group at the Einstein Institute in Potsdam) and simplicial QG (e.g. Dittrich's group at Potsdam combines both approaches).

The main thing is to have a manifold-less QG where there is enough structure on the table so one can calculate stuff---operator spectra, transition amplitudes, correlations functions, a graviton propagator. There seems to have been a merging of approaches in this direction.

So we can look at the list that Francesca and friends put up on Google---the LQG map--- and see the potential for what is actually a mix of allied manifold-less approaches.

And the question to think about is "why manifold-less?"

It has to do with diff-invariance. I have to go out briefly. Will discuss this later.
 
  • #5
marcus said:
And the question to think about is "why manifold-less?"

It has to do with diff-invariance. I have to go out briefly. Will discuss this later.

No.

"LQG is a diffeomorphism invariant theory of fields on manifolds."

http://arxiv.org/abs/0909.0939
 
  • #6
Something of a cherry-pick :biggrin: In that paper Lewandowski is presenting an excellent valuable result, and finds it convenient to use his own special terminology. He distinguishes between "SFM" (spinfoam models) and what he calls "LQG" which is based on embedded spin-networks. Old LQG.

That was a 2009 paper by Lewandowski et al, but it harks back to much earlier canonical formulations.
Rovelli's April 2010 review is more up-to-date and I will try to adhere to his terminology as much as possible. Hope you will do likewise so we don't talk at cross-purposes so much.
 
Last edited:
  • #7
This reminds me of an earlier thread where there was some confusion as to what a diffeomorphism is.

A diffeomorphism is simply a smooth 1-1 onto map.

An example would be let the manifold be the real line R with the usual differential structure---usual idea of smooth map.
Let the map be x --> 2x
"multiply every number by 2."

A smooth map does not assume the existence of a metric and has no automatic connection to one if it exists.
So it's obvious that one can add the natural metric to the picture: |x-y|. Let us assume we have that metric and no other.

This example of a diffeomorphism changes the distances between points. In fact it doubles the distances.
(Clearly a diffeo does not have to be linear, so with a more complicated example it could change distances by lots of different ratios.)

You can only say that a diffeomorphism preserves distances if you explicitly specify that the metric is mapped as well. You "take the metric along with you" so to speak. There was, I think, a lot of confused talk recently in one or more threads about diff-invariance. Rather than go back to those threads, I will just develop the ideas I need here. Simpler, and avoids wasting time with sematic bickering.
 
Last edited:
  • #8
I think only Markopoulou is working on a manifoldless approach.

Maybe Bianca Dittrich.

I mean, are spin foams manifoldless? I think of them as GFT, which has a manifold.

BTW, since your list of LQG related researchers is so broad - that's ok - did you consider http://arxiv.org/abs/0907.2994 ?
 
Last edited:
  • #9
atyy said:
...
I mean, are spin foams manifoldless? I think of them as GFT, which has a manifold.
..

I already commented on that in the "Five Principles" thread, at length :biggrin:. When I say manifold-less I mean no manifold representing the spacetime continuum. One can still use Lie groups! Rovelli's April survey of "new LQG" starts right off with cartesian products of copies of SU(2). It's how one does gauge theory on spin-networks (without a spacetime manifold) and how one defines the Hilbert space of LQG states.
 
  • #10
I guess the point should be made here that General Relativity itself is a prototypical manifold-less theory in the sense that after one does the construction one throws the manifold away.

The gravitational field, in GR, is not a particular metric on a particular manifold. It is an equivalence class of solutions under diffeos. Two given setups (manifold, metric, distribution of matter) are equivalent if there exists a diffeo which maps one to the other (TAKING EVERYTHING ALONG.)

Individual points of the spacetime manifold have no physical significance, nor does any particular manifold---the gravitational field is more abstract than that. It is an abstract geometry--an insubstantial bunch of spatial and temporal relationships.

Since the theory is constructed using a spacetime manifold, people commonly think in terms of some concrete representative of the equivalence class---which works just fine for most things.

However it doesn't work so well when you do QG, because it is wrong at a fundamental philosophical level. There is no spacetime geometry which we can determine any more than there are particle trajectories which we can determine using a finite number of slits and detectors. GR took us partway on the journey and we must begin where GR took us--we begin with the insight GR attained, by discarding the spacetime manifold as gauge.

(It's always possible to go back à la Lewandowski and restore continuity with the past. There are useful theorems to prove and things to discover by hooking the present up with earlier LQG development! But the philosophical basis, and the principal formulation, is manifold-less. Specifically it is a type of manifoldless formulation Rovelli calls "combinatorial.")

I think basically the reason we are seeing rapid growth in LQG since 2005 or 2006 is a spreading realization of the importance of this insight. (Also LQG has made remarkable advances starting in 2008, just technically speaking. That has probably helped.)
 
Last edited:
  • #11
So is this philosophically wrong? My own hope is that really it is GFT that is fundamental, but historically, spin foams do come from a spacetime manifold. And of course, manifolds are only defined up to diffeomorphism.

"Spin foam models are discrete versions of a functional integral, usually constructed using a triangulation of the space-time manifold (‘foam’), local variables (‘spins’), and local amplitudes for the simplexes in the triangulation." http://arxiv.org/abs/0907.2440
 
  • #12
marcus said:
GR took us partway on the journey and we must begin where GR took us--we begin with the insight GR attained, by discarding the spacetime manifold as gauge.
)

do these insights still apply if GR is just an entropic "equation of state"? or, as in string theory, it's just a low-energy quantized spin-2 field of a more complex 11-D M-theory?
 
Last edited:
  • #13
ensabah6 said:
or, as in string theory, it's just a low-energy quantized spin-2 field of a more complex 11-D M-theory?

Or AdS/CFT for that matter. Would the Rovellian philosophy predict that the AdS/CFT conjecture will turn out to be false?
 
  • #14
atyy said:
Would the Rovellian philosophy predict that the AdS/CFT conjecture will turn out to be false?

Certainly not! How can you say such a thing, Atyy! AdS/CFT is a mathematical conjecture concerning differential manifolds! I suspect that it will be proven as a math theorem. Or as several theorems.

One makes the required assumptions and definitions and one (hopefully eventually) can prove the theorem.

It would be naive to imagine that the Poincaré conjecture must be "false" if it turns out that there is some better way than a manifold with metric to represent space and the grav. field! :biggrin:
 
  • #15
ensabah6 said:
do these insights still apply if GR is just an entropic "equation of state"?...

Yes of course. Ask yourself what "molecules" of geometry underlie the entropy.
 
  • #16
marcus said:
Certainly not! How can you say such a thing, Atyy! AdS/CFT is a mathematical conjecture concerning differential manifolds! I suspect that it will be proven as a math theorem. Or as several theorems.

One makes the required assumptions and definitions and one (hopefully eventually) can prove the theorem.

It would be naive to imagine that the Poincaré conjecture must be "false" if it turns out that there is some better way than a manifold with metric to represent space and the grav. field! :biggrin:

But AdS/CFT is a theory of quantum gravity!

So is it actually an instantiation then of Rovellian philosophy? If you look at the CFT - there is no spacetime, only its boundary. In my thinking, AdS/CFT is the reason (well, more a gut feeling) that GFT should be primary. Actually there is some indication that Rovelli might agree! "In this sense, this approach has similarities with the philosophy of the Maldacena duality in string theory: a nonperturbative theory is dual to a more quantum field theory. But here there is no conjecture involved: the duality between certain spin-foam models and certain group field theories is a theorem." http://relativity.livingreviews.org/Articles/lrr-2008-5/
 
Last edited by a moderator:
  • #17
That's an interesting quote from Rovelli:
atyy said:
"... a nonperturbative theory is dual to a more quantum field theory. But here there is no conjecture involved: the duality between certain spin-foam models and certain group field theories is a theorem." http://relativity.livingreviews.org/Articles/lrr-2008-5/

I don't disagree with what you quote, but my perspective (as retired mathematician) is different from what I think yours is. I tend to keep mathematical theorems separate from physical theories of nature.
I think of the AdS/CFT conjecture as a (not-yet-proven) theorem. The theorem is among other things about manifolds.

As an interesting piece of mathematics, it could be applicable in several different circumstances (wherever the idealization is a good fit) at several different scales. I don't normally take mathematical tools too literally.

In any case AdS/CFT is not the topic here. I'm sure you would agree it's a big subject and needs its own thread.
 
Last edited by a moderator:
  • #18
I did some organizing and editing on the Google-maps list of LQG "places". I organized it alphabetically by country, and brought it up to date as best I could. I erased some information I thought might be out of date or where a link had gone dead. Can't vouch for everything, but on the whole it matches what I know from other sources.

Basically what it shows is a kind of explosive growth and a "diaspora". The appearance of new centers. A large number of those I first knew of as students and postdocs have moved into permanent positions.

I will get the list.
marcus said:
Francesca and others have compiled a list of people and places where LQG-and-allied research is in progress, or where a PhD student interested in LQG might connect with an advisor. I want to re-organize and edit the list to the best of my knowledge, and bring it up to date as well as I can. (In some cases I can't independently verify but just have to go along with the Google list.)

Here is the original:http://maps.google.com/maps/ms?ie=U...985216139270436.0004843830d27f3e6c50e&t=h&z=0

Australia
University of Sydney/Macquarie University
Permanent: Daniel Terno http://www.qscitech.info/ Postdoc: Florian Girelli

Britain
QG Nottingham
Permanents: John Barrett, Kirill Krasnov, Jorma Louko. http://www.maths.nottingham.ac.uk/research/applied_mathematics/quantum_gravity/
(Affiliated: Ed Copeland http://www.nottingham.ac.uk/physics/research/particles/)

Cambridge
Permanent: Ruth M. Williams

King's College London
Permanent: Mairi Sakellariadou.
http://www.kcl.ac.uk/schools/nms/physics/people/academic/sakellariadou/

Canada
Perimeter Institute for Theoretical Physics
Permanent: Laurent Freidel, Fotini Markopoulou, Lee Smolin.

Western Ontario
Permanent: Daniel Christensen

McMaster University
Permanent: Seth Major. http://academics.hamilton.edu/physics/smajor/

New Brunswick
Permanent: Viqar Husain http://www.math.unb.ca/~husain/

Denmark
Niels Bohr Instituttet
Permanent: Jan Ambjorn http://www.nbi.ku.dk/english/

France
CPT Marseille
Permanent: Alejandro Perez, Carlo Rovelli, Simone Speziale. http://www.cpt.univ-mrs.fr/~quantumgravity/ Postdocs: Eugenio Bianchi, Muxin Han, Christian Roeken, Antonino Marcianò, Marco Valerio Battisti... Students: Roberto Pereira, Valentin Bonzom, Daniele Pranzetti, You Ding, Matteo Smerlak.

École normale supérieure de Lyon
Permanent: Etera Livine. Postdoc: Johannes Tambornino

Universite De Paris XI Paris Sud
Permanent: Vincent Rivasseau http://www.rivasseau.com/2.html

Tours
Permanent: Karim Noui

Universite Montpellier II
Permanent: Sergei Alexandrov

Grenoble
Permanent: Aurelien Barreau http://lpsc.in2p3.fr/ams/aurelien/

Germany
AEI Berlin
Permanent: Bianca Dittrich, Daniele Oriti, Hermann Nicolai. http://www.aei.mpg.de/english/research/teams/
http://www.aei.mpg.de/english/research/teams/canonicalCovariantDynamics/index.html

Erlangen
Permanent: Thomas Thiemann and one more faculty soon! Postdocs: Emanuele Alesci, Enrique Fernandez Borja, Derek Wise,...PhD students: Christian Boehmer,... http://theorie3.physik.uni-erlangen.de/people.html

Universität Hamburg
Permanent: Catherine Meusburger. http://www.math.uni-hamburg.de/home/meusburger/ Postdoc: Winston Fairbairn.

Rheinische Friedrich-Wilhelms-Universität
Permanent: Klaus Kiefer

Universität Paderborn
Permanent: Christian Fleischhack

India
Raman Research Institute
Permanent: Madhavan Varadarajan

IUCAA Pune
Permanent: Naresh Dadhich

Italy
Pavia
Permanent: Mauro Carfora and Annalisa Marzuoli. Students: Hal Haggard and Francesca Vidotto (2011)

Torino
Permanent: Lorenzo Fatibene http://www.dm.unito.it/personalpages/fatibene/index.htm

Sapienza University of Rome
Permanent: Giovanni Montani, Giovanni Amelino Camelia. Giovanni Montani http://www.icra.it/cgm/welcome.htm http://www.roma1.infn.it/~amelino/

Korea
Asia Pacific Center for Theoretical Physics
Permanent: Hanno Sahlmann

Lebanon
American University of Beirut
Permanent: Tamer Tlas.

Mexico
Morelia
Permanent: Alejandro Corichi, Robert Oeckl, José Zapata. http://www.matmor.unam.mx/~corichi/lqgindex.html

Cinvestav Zacatenco
Permanent: Merced Montesinos

Netherlands
University of Utrecht
Permanent: Renate Loll http://www.phys.uu.nl/~loll/Web/title/title.html

People's Republic of China
Beijing Normal University
Permanent: Yongge Ma http://physics.bnu.edu.cn/application/research/gravity/LQG/eng/research.html

Academia Sinica
Permanent: Hoi-Lai Yu

Poland
University of Warsaw
Permanent: Jerzy Lewandowski. http://www.fuw.edu.pl/~lewand/homepage.html

Uniwersytet Wrocławski (University of Wroclaw)
Permanent: Jerzy Kowalski-Glikman.

Uniwersytet Jagielloński (Jagelonian University)
Permanent: Marek Szydlowski.

Spain
IEM-QFT Madrid
Permanent: Fernando Barbero, Guillermo Mena Marugán. Postdoc: Tomasz Pawlowski. http://www.iem.csic.es/departamentos/qft/index.html

Taiwan
National Cheng Kung University
Permanent: Chopin Soo

United States
PennState
Permanent: Abhay Ashtekar, Martin Bojowald. Postdocs: Andy Randono, Claudio Perini, Elena Magliaro, Jacobo Diaz Polo, William Nelson, Simone Mercuri. PhD:Miguel Campiglia, Adam Henderson, Artur Tsobanjan, Edward Wilson...

Louisiana State University
Permanent: Kristina Giesel, Jorge Pullin, Parampreet Singh. http://relativity.phys.lsu.edu/

Florida Atlantic University
Permanent: Jonathan Engle, Warner Miller

Haverford College
Permanent: Stephon Alexander.

Kansas State University
Permanent: Louis Crane. http://www.math.ksu.edu/main/contact_info/personnel_detail?person_id=1330

Riverside
Permanent:John Baez. http://math.ucr.edu/home/baez/README.html

Caltech
Permanent: Matilde Marcolli. http://www.its.caltech.edu/~matilde/

Uruguay
Montevideo
Permanent: Rodolfo Gambini, Michael Reisenberger

Some of the senior people on the Google-maps list have only tentative association with LQG, but were included for whatever reason. Marcolli is mainly NCG and has only one recent spinfoam paper. Baez main interests are outside QG, as far as I know. He might be willing to advise PhD students in quantum gravity, but I am not sure. Loll and Ambjorn work with simplicial QG---they actually have a rival approach to LQG. Stephon Alexander has co-authored with LQG people in the past but again I don't think LQG is a central interest of his. So the list as we get it off Google contains periferal people. Rivals and alternatives. Actually I don't know how I would have compiled it myself---distinctions are not sharply drawn. But it seems right to me in the main.
 
Last edited by a moderator:

What is the Asia Pacific Center for Theoretical Physics (APCTP)?

The Asia Pacific Center for Theoretical Physics is an international research center located in Pohang, South Korea. It was established in 1996 and is dedicated to promoting research and collaboration in theoretical physics in the Asia-Pacific region.

What is the LQG group at APCTP?

The LQG (Loop Quantum Gravity) group at APCTP is a research group focused on the development and application of loop quantum gravity, a theory of quantum gravity that attempts to reconcile general relativity and quantum mechanics.

What does the new LQG group at APCTP hope to achieve?

The new LQG group at APCTP aims to advance the understanding of loop quantum gravity by conducting cutting-edge research, organizing workshops and conferences, and fostering collaboration among scientists in the Asia-Pacific region and beyond.

Who can join the LQG group at APCTP?

The LQG group at APCTP is open to all researchers and students interested in loop quantum gravity, regardless of their location or institutional affiliation. However, membership is subject to approval by the group's steering committee.

Are there any upcoming events or activities organized by the LQG group at APCTP?

Yes, the LQG group at APCTP organizes regular workshops, conferences, and seminars. Information about upcoming events can be found on the group's website or by contacting the group's organizers.

Similar threads

  • Beyond the Standard Models
Replies
2
Views
2K
  • Beyond the Standard Models
Replies
27
Views
6K
  • Beyond the Standard Models
Replies
5
Views
3K
Replies
2
Views
3K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
10
Views
5K
Back
Top