Aspect/Innsbruck Interpretation which respects SR locality

In summary: QM's "statistical" nature, because he wanted a deterministic theory. Schroedinger who came up with his "cat" in order to show the absurdity of the theory.If Schroedinger had been the most "famous" physicist, and not Einstein, then the EPR argument would likely have been formulated differently, in a way that it would have been a "proof" of macroscopic entanglement, and not a "proof of non-locality".Now, let's turn back to the real world (where Einstein was the big guy, and Schroedinger not so big). Let's call the "distant observer" Alice and the local observer Bob.Alice can
  • #1
Hans de Vries
Science Advisor
Gold Member
1,091
27
--
--


EPR experiments seem to show a significantly higher
correlation rate in the detection of separated photons which
are in an entangled state. From the measured correlation we
may or may not want to draw very fundamental conclusions.

One such a far reaching conclusion would be that our world
is fundamentally non-local and that "action on a distance"
is possible. This would be in serious friction with the Special
Theory of Relativity.

Rather then saying that QM predicts non-locality we need to
be more specific and state that the correlations measured
predict non-locality, that is, if all other alternative local
explanations are exhausted.

The most successful Quantum Field Theory, The Standard Model
which unifies the Electromagnetic, Weak and Strong forces does
not need "action on a distance". Path integrals do not "jump
space" and respect Special Relativity.

Some of the champions of the Standard Model have a strong
preference for local theories. For instance Gerard ‘t Hooft:
http://www.phys.uu.nl/~thooft/quantloss/sld020.htm

--------------------------------------------------

I would like to show an example of how a purely local
interpretation can give a much higher correlation equal
to the results of the Aspect and Innsbruck experiments
without the need for action on a distance.

I will discuss first the “Bell Inequality” case, the non-local
QM case and then the local alternative. I’ll use an example
based on the Wollaston Prism which is used in most if not
all EPR experiments.

The Wollaston Prism splits a light beam in two beams, one
horizontally and one vertically polarized. A single photon
is said to exit at either the horizontal or vertical output, but
never at both.

--------------------------------------------------

We will look at the case where the two entangled photons at
A and B are both polarized at 45 degrees with respect to the
Wollaston prisms:


The Bell inequality case: It is presumed that the photon at
A has a 50:50 % chance to exit at the horizontal or vertical
output and the same is true for the photon at B. However,
the outcome at A and B are presumed to be completely
independent even though the particles are entangled.
The correlation is calculated to be 50%

The non-local QM case: It is presumed that the photon at
A has a 50:50 % chance to exit at the horizontal or vertical
output. However when it exits at for instance the vertical
output then “action on a distance” causes the photon at B to
be also vertically polarized as a result of the measurement at A.
The correlation is assumed to be ~100%

The alternative local model: We presume that both photons
share a property because they are entangled. They are more
equal then other seemingly equal photons. If the photon at
A leaves at the horizontal output then B will generally also leave
at the horizontal output because they share this property.
Although different photons will exit at different sides, entangled
photons will typically leave at the same side resulting in a
correlation of ~100%

--------------------------------------------------


This would mean that the selection process at the Wollaston
Prism is not entirely random anymore but became predeter-
mined by the property at the place where the photons became
entangled.

This then requires a property to be explained. One possibility
I came across stems from the fact that fundamental photons
(spin 1 bosons) are either left or right circular polarized.
So called linear polarized single photons as presumed in the
EPR experiments can not be fundamental since they would
have spin 0.

Linear polarized photons must be considered to be a combination
of a photon with spin up and a photon with spin down. This now
introduces extra degrees of freedom. These degrees of freedom
may be random for arbitrary photons but equal for entangled
photons coming from a PDC.

The particular constitution of the up and down photon may make
the difference in the birefringent beam splitter where a choice
is forced for the 45% polarized combination to exit at either the
horizontal or vertical polarized output.

--------------------------------------------------

This example just goes to show that one should exhaust
all possible local explanations before such far reaching
conclusions as non-locality can be made with certainty.

It’s my opinion that the above alternative should be
disproved convincingly in order to prove non-locality.


Regards, Hans


PS. The difference in correlation in the actual Aspect and
Insbruck experiments is not as high as here stated because
several things are going on at the same time. The photons
are assumed to be superposition states and various different
angles are used randomly (0, 22.5 45 and 67.5 degrees)
 
Physics news on Phys.org
  • #2
Hans de Vries said:
One such a far reaching conclusion would be that our world
is fundamentally non-local and that "action on a distance"
is possible. This would be in serious friction with the Special
Theory of Relativity.

The statement that EPR experiments indicate that "quantum mechanics is inherently non-local" is over-stretched. The unitary part of quantum mechanics is (as you point out, in the standard model for example) perfectly local. What is non-local is the projection postulate, when applied too early. In a many-worlds like context, nothing non-local is going on, and this explains also in a quite natural way why we can "see correlations which point to nonlocality after the fact" but that we can never observe them "in real time" and have to wait for the sub-lightspeed signal in order to find it out.

So if you take the attitude that QM only predicts statistics, then there is not really a problem, because nothing "inherently nonlocal" happened. The only thing that is disproved by Bell's inequalities is that these statistics cannot be generated by an underlying local realist model.
If you take the attitude that QM describes physically what happens (my preference) and take the Hilbert space as something physical, then what goes wrong is the collapse at a distance: so simply don't collapse, and you're ok too.

cheers,
Patrick.
 
  • #3
I would like to add the following:
If the EPR situation hadn't been motivated by Einstein's viewpoint, and successively by Bell's work, then the experiment could be interpreted in a totally different way, being a "proof" of macroscopic entanglement and not a "proof of non-locality".

Let us imagine that Einstein never insisted on an underlying mechanism that would generate the statistics (hidden variable model) - or for that matter, that Einstein wasn't such a heavy-weight in physics, and that Schroedinger was the "big guy" to whom everyone was paying attention.
Schroedinger (and his cat) claimed somehow that you couldn't have macroscopic superpositions of classical situations "because of the absurdity of the idea" (a cat which is dead and alive at the same time). In fact, Schroedinger understood very well that the unitary evolution of QM automatically lead to entanglement of macroscopic systems.

And let us imagine that an experiment would then be set up to show that even people can be in macroscopic superpositions. How would one try to do that ? How could we verify that Alice is in an entangled state ? The simplest way would be to entangle Alice with a microscopic system which is entangled with another system, of which we know it cannot influence Alice, because it is miles away, in a bunker 50 m underground. And in order to check whether Alice is really entangled, you let her come down later into the bunker, and see if she can interfere with that second microscopic system.
So what do you do ?
You generate 2 entangled particles (say, 2 photons), and "keep one in the bunker" and send off another one to Alice, miles away.

So we have:
|photonspins> = (|bunkerz+>|farawayz-> - |bunkerz->|farawayz+>)|alice0>

(this state is such that we can take z to be any direction)

She "measures" something about the faraway photon (say the spin component in the z-direction), which comes down to entangling her, locally, with that spin component. So we have now Alice in an entangled state:

|bunkerz+>|farawayz->|alicez-> - |bunkerz->|farawayz+>|alicez+>

This is the kind of state Schroedinger objected to. Note that to obtain the state, there has only been a LOCAL interaction at Alice's place, between her and the faraway photon.
|alicez-> is the Alice who saw a z- state, and |alicez+> is the Alice who saw a z+ state.

Now, how could we find out whether this superposition is total nonsense or not ? Let us let Alice INTERFERE with the state of the bunker photon !

So the two states of Alice now take the train, and come down to the bunker. In doing so, she gets extra correlated with a lot of environment, like the guy in her compartment to whom she shows her notebook etc... So you can now take on the situation in which |alicez-> stands in fact not only for alice, but also for the guy in the train and everything which gets correlated with her. It doesn't matter.

If Alice now comes into the bunker, and she decides to measure the spin of the other photon, which is still whirling around in optical fibers, if she's in an entangled state, she will get an interference result which shows in her correlations between her notebook of the faraway photon and the local bunker photon.
So Alicez- will work with the |bunkerz+> state and find accordingly the correct correlations, while Alicez+ will work with the |bunkerz-> state and will also find the correct correlations. So in both cases, Alice will realize she finds correlations with the state she's supposed to find *as if she collapsed the wavefunction* at a distance during her first "measurement". But in fact, her two states interfered with the bunker photon ! And of course, locally in the bunker, nothing "collapsed" when she did the other measurement !

So this experiment, which shows interference between the Alice states in her notes, shows us that we have to take the macroscopic superpositions seriously. This could have been the aim of the experiment.

If you take quantum mechanics seriously, you don't even need the Bell inequalities to prove the point. The very fact that Alice, if she measures the z-components everywhere, always finds perfect anticorrelation, indicates already her superposition. This is the outcome when you stay within the framework of QM, but you wonder whether it makes sense to talk about macroscopic superpositions.

But you then might find the objection that *maybe we don't know, but the photons DO carry hidden variables with them giving you the outcomes for the spins*. And in fact, the original "entanglement" of the two photons just meant a correlation of the hidden variables, like the classical example with a red and a black marble in two bags: if you know that there is a red marble in YOUR bag, you automatically know that there must be a black marble in the other bag. Note that saying that already gets us out of the scope of QM, because it means that the initial entanglement of the two photons is just an expression of a correlation of underlying hidden variables. It is at that point that Bell's inequalities show us that for certain combinations of choices of measurement by Alice, you cannot find hidden variables which could generate you the same correlations in her notebooks.

You can even increase the power of the experiment in proving that macroscopic entanglements must exist, by using 2 human beings, Alice and Bob, who measure simultaneously some spin components: Bob in the bunker, and Alice far away, and then they both take the train and meet in some intermediately located railway station.
Then it is the entangled Bob state which interferes with the entangled Alice state, and out come a superposition of "bob and alice" product states which have correct notes.

At no point in this discussion, locality has been put in doubt. What has been studied is whether macroscopic superpositions make sense, and the experiment gives strong hints that yes, you have to take macroscopic superpositions into account, if you do not want to "collapse wavefunctions" at 50 miles, 700 meter underground, in a bunker, and of which we never got any theoretical nor experimental indication.
Of course, if you INSIST on that collapse because you cannot stand the idea of macroscopic superpositions, you get into all kinds of weird ideas,such as non-locality, signalling back in time, and so on. But if you accept QM AS IT IS, there is no problem.

cheers,
Patrick.
 
  • #4
Hans,
Given my little knowledge of QFT,I've the following question.
Could we assume the following picture for a linearly polarized photon:-it is a mixture of two one-photon states,one left circularly polarized and another right circularly polarized with equal probability amplitudes for both the states?
If yes,then the following question arises:-if such a photon is passed thru a polarizer how do you calculate the probability of it passing thru a polarizer?Do you first calculate the prob. amplitudes for the two states passing thru the polarizer,add them and then square to get the probability or you calculate the probabilities for the two states and simply add them?
The former looks to me the right thing to do.If yes,one needs to re-do the EPR calculations and see what we get.
 
  • #5
gptejms said:
Hans,

If you only want Hans to reply, then ignore my message :smile:

Could we assume the following picture for a linearly polarized photon:-it is a mixture of two one-photon states,one left circularly polarized and another right circularly polarized with equal probability amplitudes for both the states?
If yes,then the following question arises:-if such a photon is passed thru a polarizer how do you calculate the probability of it passing thru a polarizer?Do you first calculate the prob. amplitudes for the two states passing thru the polarizer,add them and then square to get the probability or you calculate the probabilities for the two states and simply add them?
The former looks to me the right thing to do.If yes,one needs to re-do the EPR calculations and see what we get.

Ha, you hit the nail on its head. The question is, again and again: when do we use the Born rule ?
If you consider the first case, namely you calculate the coefficient of the vector component that gets through the polarizer, then you postpone the use of the Born rule - and that's what you should do.
If you apply the Born rule BEFORE the polarizer, then you calculate the individual probabilities.

Let's have a look: we take right-polarized photon |r> ; left : |l>
we take linear x-polarized light: |x> and y-polarized light |y>

we have that |r> = 1/sqrt(2) ( |x> + i |y>)
and : |l> = 1/sqrt(2) (|x> - i |y> )

You can inverse easily these two linear equations:

|x> = 1/sqrt(2) (|r> + |l> )
|y> = - i /sqrt(2) (|r> - |l> )

Let us assume we have an |x> state. You consider somehow the r/l base as more fundamental, so we say that |x> is a superposition of |r> and |l>.

probability to be in the |r> state: 1/2 and probability to be in the |l> state: 1/2. That's applying Born's rule, and you transform in fact the superposition into a statistical mixture.
But this goes terribly wrong !
Namely, what's the probability of an |r> state to be x-polarized ? It is 1/2.
Same for an |l> state. So how much of our original |x> state gets through an x-polarizer ??
1/2 x 1/2 + 1/2 x 1/2 = 1/4 + 1/4 = 1/2

So x-polarized light only gets half through an x-polarizer ? ERROR !

No, you have to work with the Hilbert states. An |x> state is an eigenstate of the polarizer measurement, which has eigenvalue 1 for |x> and eigenvalue 0 for |y>. So an |x> state, being an eigenvector, will get through it 100%.

cheers,
Patrick.
 
  • #6
Thanks vanesch for your imp. input.
Coming back to Hans:-it's amply clear that for a state like |x>,the prob. amplitude for the photon to pass thru a polarizer directed along |x'>, at an anlgle [tex] \theta [/tex] to |x>,is [tex] <x'|x> = \cos \theta [/tex]---the probability is [tex] \cos^2 \theta [/tex]--i.e. Malus' law is satisfied in this quantum scenario.For the classical case,treatment as in posts in the thread 'Bell's theorem and negative probabilities' stands.So nothing new really arises by considering left/right circular polarizations of a photon.
 
  • #7
Hans de Vries said:
1. EPR experiments seem to show a significantly higher correlation rate in the detection of separated photons which
are in an entangled state. From the measured correlation we
may or may not want to draw very fundamental conclusions.

One such a far reaching conclusion would be that our world
is fundamentally non-local and that "action on a distance"
is possible. This would be in serious friction with the Special
Theory of Relativity.

Rather then saying that QM predicts non-locality we need to
be more specific and state that the correlations measured
predict non-locality, that is, if all other alternative local
explanations are exhausted.

2. The Bell inequality case: It is presumed that the photon at
A has a 50:50 % chance to exit at the horizontal or vertical
output and the same is true for the photon at B. However,
the outcome at A and B are presumed to be completely
independent even though the particles are entangled.
The correlation is calculated to be 50%

3. This would mean that the selection process at the Wollaston
Prism is not entirely random anymore but became predeter-
mined by the property at the place where the photons became
entangled.

Regards, Hans

1. I agree: this is actually exactly what the Bell Theorem leads us to... but many folks cannot see how we could get the correlations without locality being violated. So they assume non-locality is observed. But that is not strictly a consequence of Bell. Reality - as we commonly understand it - may not be an accurate way to look at the universe. I.e. it's a local non-realistic universe rather than a non-local realistic universe.

2. I do not follow you here. Bell clearly contemplated that local reality (LR) yielded identical predictions to QM, not different ones.

3. I couldn't follow your logic on this one. As I understand it, you are saying that we are measuring something different than a spin 1 particle. But how does that make the Bell Theorem conclusion - no local hidden variables - disappear?
 
  • #8
DrChinese said:
I.e. it's a local non-realistic universe rather than a non-local realistic universe.


Right ! The issue is not locality, but "realism" (in the classical sense). But if you push in realism by all means, then it looks like locality is violated, causality is violated and all this in such a way that... you cannot really violate causality or locality :rolleyes:


cheers,
patrick.
 
  • #9
vanesch said:
Right ! The issue is not locality, but "realism" (in the classical sense). But if you push in realism by all means, then it looks like locality is violated, causality is violated and all this in such a way that... you cannot really violate causality or locality :rolleyes:


cheers,
patrick.

Yes, I am glad you said that. I think it is also interesting that the same kind of spooky actions that happen in an EPR setup - i.e. instantaneous collapse of the wave function - also happen in plenty of other situations in which locality isn't an issue. Presumably, covering up one slit in a double slit experiment immediately changes something at the other slit. (And no one has a cow about that :rofl: even though it is no different.) So the point is that EPR tests really show nothing surprisingly new, they just show it so well!
 
  • #10
Hans de Vries said:
--
--
EPR experiments seem to show a significantly higher
correlation rate in the detection of separated photons which
are in an entangled state. From the measured correlation we
may or may not want to draw very fundamental conclusions.
In view of the various loopholes in the experiments, whether or not the observed correlation is incompatible with local realism is debatable. I'm interested, though, in your point about Wollaston prisms not necessarily splitting even light polarised at 45 deg 50-50. I'm beginning to accumulate evidence, not so much from EPR experiments as from other quantum optics ones, that the behaviour of the light may be influenced by the phase difference between the horizontal and vertical components. This applies only when the source is a PDC one, but in practice this means nearly every recent quantum optics experiment.

I'm afraid I have little use for the "photon" concept, or for the idea that plane polarised light is always formed by the addition of right and left circularly polarised waves. PDC outputs are sometimes polarised exactly vertically or exactly horizontally, but sometimes, I believe, both at once. In these cases, the phase difference between the two components is undeniably critical to the way the light splits at a Wollaston prism. The matter is mentioned in a footnote to Weihs et al's report of their 1998 Bell test at Innsbruck -- it comes from the standard classical theory of light. [I discuss how this may explain Weihs' results in http://arxiv.org/abs/quant-ph/9912082.] [Broken]

There may, though, be other subtle properties of the light and of the prism that influence the proportion in which the energy of an individual pulse of light it is split. The prism is actually a pair of prisms, with carefully-engineered layers of dielectric or metal, of thickness 1/2 or 1/4 wavelength, between the them. The behaviour of the light may well be influenced by its exact wavelength, with 50-50 splitting occurring only when that wavelength exactly matches the one for which the prism was designed.

No time for more ...

Caroline

http://freespace.virgin.net/ch.thompson1/
 
Last edited by a moderator:
  • #11
Caroline Thompson said:
I'm interested, though, in your point about Wollaston prisms not necessarily splitting even light polarised at 45 deg 50-50. I'm beginning to accumulate evidence, not so much from EPR experiments as from other quantum optics ones, that the behaviour of the light may be influenced by the phase difference between the horizontal and vertical components. This applies only when the source is a PDC one, but in practice this means nearly every recent quantum optics experiment.

...

There may, though, be other subtle properties of the light and of the prism that influence the proportion in which the energy of an individual pulse of light it is split. The prism is actually a pair of prisms, with carefully-engineered layers of dielectric or metal, of thickness 1/2 or 1/4 wavelength, between the them. The behaviour of the light may well be influenced by its exact wavelength, with 50-50 splitting occurring only when that wavelength exactly matches the one for which the prism was designed.

This argument deftly diverts us from the essence of the experimental results (which do not support local realism and do support the predictions of QM). If there was no correlation observed, this might be meaningful. But since we see strong correlations, this issue is totally meaningless. It doesn't matter what kind of splitter is used as long as efficiency is high. And it also doesn't matter is there is some anisotropy. There cannot be "accidental" agreement due to a local polarizer bias in this kind of setup.
 
  • #12
vanesch said:
I would like to add the following:
If the EPR situation hadn't been motivated by Einstein's viewpoint, and successively by Bell's work, then the experiment could be interpreted in a totally different way, being a "proof" of macroscopic entanglement and not a "proof of non-locality".

In a similar sense I've got the feeling that, If Einstein, Podolsky and
Rosen would have been familiar with the Fourier Interpretation of
Heisenberg's Uncertainty Relation, we not would have the hidden
variables so much in the in the center of the discussion.

From the EPR paper on DrChinese's website:

A. Einstein said:
From this follows that either (1) the quantum-mechanical description
of reality given by the wave function is not complete or (2) when the
operators corresponding to two physical quantities do not commute
the two quantities cannot have simultaneous reality.
For if both
of them had simultanous reality-and thus definite values-these values
would enter into the complete description.

So it's either (1) Hidden Variables or (2) No "simultaneous reality"


Regards, Hans
 
  • #13
gptejms said:
Hans,
Given my little knowledge of QFT,I've the following question.
Could we assume the following picture for a linearly polarized photon:-it is a mixture of two one-photon states,one left circularly polarized and another right circularly polarized with equal probability amplitudes for both the states?
If yes,then the following question arises:-if such a photon is passed thru a polarizer how do you calculate the probability of it passing thru a polarizer?Do you first calculate the prob. amplitudes for the two states passing thru the polarizer,add them and then square to get the probability or you calculate the probabilities for the two states and simply add them?
The former looks to me the right thing to do.If yes,one needs to re-do the EPR calculations and see what we get.

The complication I see is the nature of the birefringent Calcite of the
Wollaston Prisms. It has a different diffraction index for horizontal and
vertical polarized light. (nE = 1.4864, nO = 1.6585) which means that
the speed of light depends on the polarization of the photons. Now
what will be the effect on a circular polarized photon (spin up or down) ?



http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/cdopt.html

Regards, Hans
 
  • #14
Hans de Vries said:
Now
what will be the effect on a circular polarized photon (spin up or down) ?

This is classical optics :smile:
Remember the quarter wavelength plates which transform linearly polarized light under 45 degrees into circularly polarized light ?

It is quite straightforward:

If |pol> is your incoming polarization, then you write |pol> in the x-y basis:
|pol> = a |x> + b |y>

|x> will follow the evolution with a refractive index n_x, and |y> will follow the evolution with a refractive index n_y.

This means that you can calculate how many wavelengths w_x have been gone through for the x-part (from the incoming surface of your optical device to the outgoing surface), and idem for w_y. Each component will then get a phase factor equal to exp(i 2 pi w_j), so the outgoing polarization is:

|pol-out> = a exp(i 2 pi w_x) |x> + b exp( i 2 pi w_y) |y>

( I use here QM notation, but the calculation is identical in classical optics of course).

Exercise: pure |x> will remain pure |x> and pure |y> will remain pure |y> (both get a phase factor: some optical path length).

Exercise: 1/4 wavelength plate:
incoming linear polarized under 45 degrees:
|pol> = 1/sqrt(2) (|x> + |y>)

quarter wavelength: w_x = n ; w_y = n + 1/4

thus: |pol-out> = 1/sqrt(2) ( |x> + i |y>)

circularly polarized light (due to the i)

Exercise: 1/2 wavelength plate:
incoming linear polarized under 45 degrees:
|pol> = 1/sqrt(2) (|x> + |y>)

w_x = n ; w_y = n + 1/2

|pol> = 1/sqrt(2) (|x> - |y>)

linearly polarized light which is 90 degrees rotated with incoming polarization!

Optics is fun.

cheers,
Patrick.
 
  • #15
vanesch said:
This is classical optics :smile:
Remember the quarter wavelength plates which transform linearly polarized light under 45 degrees into circularly polarized light ? ...
Quite. This classical optics is what I was talking about.

Caroline
 
  • #16
vanesch said:
Right ! The issue is not locality, but "realism" (in the classical sense). But if you push in realism by all means, then it looks like locality is violated, causality is violated and all this in such a way that... you cannot really violate causality or locality :rolleyes:

You just reminded me of something Murray Gell-Mann and Jim Hartle said about EPR. :smile: Here's the quote, the italics are theirs.

This behaviour, although unfortunately called "non-local" by some authors, involves no non-locality in the ordinary sense of quantum field theory and no possibility of signaling outside the light cone. The problem with the "local realism" that Einstein would have liked is not the locality but the realism. Quantum mechanics describes alternative decohering histories and cannot assign "reality" simultaneously to different alternatives because they are contradictory.

That's from their paper, Quantum Mechanics in the Light of Quantum Cosmology, the first paper to describe their Decoherent Histories work to clarify quantum theory. It's not freely available online but I have a scanned copy.

If you haven't read their work on this already, then I think you'll find it very interesting. Hartle introduces some parts of their work here in a different paper that talks about the two-slit experiment:

http://arxiv.org/abs/gr-qc/9210006
 
  • #17
vanesch said:
The statement that EPR experiments indicate that "quantum mechanics is inherently non-local" is over-stretched. The unitary part of quantum mechanics is (as you point out, in the standard model for example) perfectly local. What is non-local is the projection postulate, when applied too early. In a many-worlds like context, nothing non-local is going on, and this explains also in a quite natural way why we can "see correlations which point to nonlocality after the fact" but that we can never observe them "in real time" and have to wait for the sub-lightspeed signal in order to find it out.
How is "locality" defined in the context of quantum theory? This isn't obvious to me if you represent a system's state as a vector in Hilbert space. For a classical field, each point in space is assigned a force vector, and "locality" basically means that the direction and magnitude of the vector at a given point in spacetime depends on the vectors at all the points in its past light cone, but does not depend on the vectors at points outside the past light cone. Can a system's quantum state be described by assigning some mathematical entity (analogous to the force vector) to each point in space, with "locality" having the same sort of meaning?
 
  • #18
JesseM said:
How is "locality" defined in the context of quantum theory? This isn't obvious to me if you represent a system's state as a vector in Hilbert space.

The Hilbert space state is of course not local, in the same way as a point in classical phase space is not "local". By local is meant only that physical processes only work on the components of the tensor product of spaces which correspond to systems which are local.
So if we have a general state in the space H1xH2xH3 where system 1, described by H1, is far away, and H2 and H3 are systems in each other's neighbourhood, then the general state:

a |u1>|u2>|u3> + b |v1>|v2>|v3>

undergoing a local physical process involving H2 and H3
can only change |u2>|u3> into something else and |v2>|v3> into something else, according to the same unitary transformation U23.
Locally at "23" you cannot do anything about u1 or even know anything about it ; it is completely transparant to the physics at "23".
I think this is what is generally meant with locality: an interaction can only influence the part of the description which corresponds to local systems.

cheers,
Patrick.

EDIT: I should point out maybe that what I think is understood by "locality" is "the ability to influence, through interaction" and not "the description of the state of the universe". In fact, in pre-relativistic physics, locality might have been a philosophically satisfying, but not strictly necessary requirement. It is relativity which makes "locality" equivalent to "causality". And causality is a much harder thing to sacrifice.
But all this has only to to with *interactions*. So as long as interactions only influence that part of the state description which has to do with the locally available systems, I think one can conclude that the theory is "local" in the sense required by relativity and causality.

So in quantum theory, the state description is not local, but the interactions satisfy locality, at least as long as one doesn't apply the projection postulate. The projection postulate is bluntly non-local ; so if the projection postulate is part of the possible sets of interactions in nature, then there is a real problem with causality ; and it is THIS thing which people are always talking and writing about. But - as I tried to point out several times - you don't need to apply that postulate non-locally: you can wait until you arrive at your final, local, measurement of the correlations (after Bob and Alice came together to compare their notebooks). And if you do so, all the mystique of the non-locality of QM drops. The mystery is not so much in the fact that it could have been non-local (and hence non-causal), but in that the inherent mechanism in QM is such that it is non-local and non-causal, but that each time you would like to USE that non-locality to make a faster-than-light phone, somehow there is a conspiracy in the theory that forbids you to do so.
If you understand that there is also a non-a-causal explanation to the EPR experiments (with Alice and Bob in entangled states), then this "conspiracy" is easily explained.

EDIT2:
the fact that you want to assign numbers to each local system (for instance, through fields) which will then determine completely (deterministically or stochastically) what will happen to that local system, I would call that "realism", in that there is a complete description of the local system which corresponds to its "real behaviour".

For instance, Newton's theory of gravity is realist but non-local (the "real state" of each particle is locally described by its velocity and (of course) its location) but gravity works at a distance.
Maxwell's electromagnetism is realist and local (all you need to know locally about the state of the EM field is given by the local values of E and B ; and they influence each other only through their derivatives).
Quantum theory is non-realist but local.
 
Last edited:
  • #19
JesseM said:
basically means that the direction and magnitude of the vector at a given point in spacetime depends on the vectors at all the points in its past light cone, but does not depend on the vectors at points outside the past light cone.

A more formal answer: yes, in QFT, field operators which correspond to spacetime events which are space-like connected, commute. This is the requirement of locality in QFT. It comes down to what I said in my previous post: an interaction, depending on the field operators at A, will not influence any component of the state vector at B.

cheers,
Patrick.
 
  • #20
DrChinese said:
2. I do not follow you here. Bell clearly contemplated that local reality (LR) yielded identical predictions to QM, not different ones.

Let's see. are you assuming here that for the case of 45 degrees Bell
and entangled QM should be equal? That is, in the electron LR theory
of Bell?

The two differences here are
1) is that were looking at photons.
2) is that both a and b have equal angles.

So we have the 0 degrees case here. See figure 4 of Aspect
http://www.drchinese.com/David/EPR_Bell_Aspect.htm
and figure 3. of Caroline's paper which shows the idealized QM and LR
curves. http://arxiv.org/abs/quant-ph/9903066

3. I couldn't follow your logic on this one. As I understand it, you are saying that we are measuring something different than a spin 1 particle. But how does that make the Bell Theorem conclusion - no local hidden variables - disappear?

If a linear polarized photon is a composition of a spin up and a spin
down particle then there are extra degrees of freedom to combine
them. These extra degrees of freedom may be random in general but
equal in the two entangled particles.

The extra degrees of freedom may also influence the outcome of the
measurement and thus increase the correlation well beyond what is
shown in figure 3 of Caroline's paper for the LR case.

Caroline's calculation for the LR case assumes that the only thing they
have in common is the polarization angle.


Regards, Hans
 
  • #21
Caroline Thompson said:
In view of the various loopholes in the experiments, whether or not the observed correlation is incompatible with local realism is debatable. I'm interested, though, in your point about Wollaston prisms not necessarily splitting even light polarised at 45 deg 50-50. I'm beginning to accumulate evidence, not so much from EPR experiments as from other quantum optics ones, that the behaviour of the light may be influenced by the phase difference between the horizontal and vertical components. This applies only when the source is a PDC one, but in practice this means nearly every recent quantum optics experiment.

I'm afraid I have little use for the "photon" concept, or for the idea that plane polarised light is always formed by the addition of right and left circularly polarised waves. PDC outputs are sometimes polarised exactly vertically or exactly horizontally, but sometimes, I believe, both at once. In these cases, the phase difference between the two components is undeniably critical to the way the light splits at a Wollaston prism. The matter is mentioned in a footnote to Weihs et al's report of their 1998 Bell test at Innsbruck -- it comes from the standard classical theory of light. [I discuss how this may explain Weihs' results in http://arxiv.org/abs/quant-ph/9912082.] [Broken]

There may, though, be other subtle properties of the light and of the prism that influence the proportion in which the energy of an individual pulse of light it is split. The prism is actually a pair of prisms, with carefully-engineered layers of dielectric or metal, of thickness 1/2 or 1/4 wavelength, between the them. The behaviour of the light may well be influenced by its exact wavelength, with 50-50 splitting occurring only when that wavelength exactly matches the one for which the prism was designed.

No time for more ...

Caroline

http://freespace.virgin.net/ch.thompson1/

Thanks, Caroline.

I will have a look at this Weihs story. If you have more info on
this kind of specifics on the exact functioning of the PDC's used
or the Wollaston prisms, please let me know.


Regards, Hans
 
Last edited by a moderator:
  • #22
vanesch said:
EDIT2:
the fact that you want to assign numbers to each local system (for instance, through fields) which will then determine completely (deterministically or stochastically) what will happen to that local system, I would call that "realism", in that there is a complete description of the local system which corresponds to its "real behaviour".

For instance, Newton's theory of gravity is realist but non-local (the "real state" of each particle is locally described by its velocity and (of course) its location) but gravity works at a distance.
Maxwell's electromagnetism is realist and local (all you need to know locally about the state of the EM field is given by the local values of E and B ; and they influence each other only through their derivatives).
Quantum theory is non-realist but local.
But if one favors the Everett interpretation, then under this interpretation quantum theory would be realist--the wavefunction of the universe would be a complete description of the universe at any given moment. As you say in your post, it would also be "local" in the sense that observers can't transmit information faster than light, but would there be any way to break up the state of the whole wavefunction into a bunch of local chunks of information, in the way that the state of a whole classical field can be broken up into information about the force vectors at each point in space?

I came across this paper which seems to argue (although I may be misunderstanding) that you can get such a local description of the universe's state if you use the Heisenberg picture, where it's the operators that change over time rather than the wavefunction:
In the Everett interpretation the nonlocal notion of reduction of the wavefunction is eliminated, suggesting that questions of the locality of quantum mechanics might indeed be more easily addressed. On the other hand, while wavefunctions do not suffer reduction in the Everett interpretation, nonlocality nevertheless remains present in many accounts of this formulation. In DeWitt’s (1970) often-quoted description, for example, “every quantum transition taking place on every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriads of copies of itself.” Contrary to this viewpoint, others argue (Page, 1982; Tipler, 1986, 2000; Albert and Loewer, 1988; Albert, 1992; Vaidman, 1994, 1998, 1999; Price, 1995; Lockwood, 1996; Deutsch, 1996; Deutsch and Hayden, 2000) that the Everett interpretation can in fact resolve the apparent contradiction between locality and quantum mechanics. In particular, Deutsch and Hayden (2000) apply the Everett interpretation to quantum mechanics in the Heisenberg picture, and show that in EPRB experiments,1 information regarding the correlations between systems is encoded in the Heisenberg-picture operators corresponding to the observables of the systems, and is carried from system to system and from place to place in a local manner. The picture which emerges is not one of measurement-type interactions “splitting the universe” but, rather, producing copies of the observers and observed physical systems which have interacted during the (local) measurement process (Tipler, 1986).
Likewise, in this paper by the same author, I think he's arguing that the Everett interpretation of quantum field theory can also be understood in terms of information encoded in purely local operators:
In the Everett interpretation, correlations between the two experimenters’ results are not at issue; rather, a different question of causation arises. According to Everett, both possible outcomes, spin-up and spin-down, occur at each analyzer magnet and, at the conclusion of the experiment, there are two copies of each experimenter.2 When they compare their respective results using some causal means of communication, Alice-who-saw-spin-up only talks to Bob-who-saw-spin-down, and Alice-who-saw-spin-down always converses with Bob-who-saw-spin-up. What is the mechanism which brings about this perfect anticorrelation in the possibilities for exchange of information between the Alices and the Bobs?

Deutsch and Hayden(21) have identified this mechanism. In the Heisenberg picture of quantum mechanics, the properties of physical systems are represented by time-dependent operators. When two systems interact, the operators corresponding to the properties of each of the systems may acquire nontrivial tensor-product factors acting in the state space of the other system. These factors are in effect labels, appending to each system a record of the fact that it has interacted with a certain other system in a certain way.(22) So, for example, when the two particles in the EPRB experiment are initially prepared in the singlet state, the interaction involved in the preparation process causes the spin operators of each particle to contain nontrivial factors acting in the space in which the spin operators of the other particle act. When Alice measures the spin of one of the particles, the operator representing her state of awareness ends up with factors which act in the state space of the particle which she has measured, as well as in the state space of the other particle. The operator corresponding to Bob’s state of awareness is similarly modified. When the Alices and Bobs meet to compare notes, it is these factors which lead to the correct pairing-up of the four of them.

The amount of information which even a simple electron carries with it regarding the other particles with which it has interacted is thus enormous. In Ref. 22 I termed this the problem of “label proliferation,” and suggested that the physical question of how all this information is stored3 might receive an answer in the framework of quantum field theory.

More generally, quantum field theory is a description of nature encompassing a wider range of physical phenomena than the quantum mechanics of particles; it is therefore of interest to investigate the degree to which the conceptual picture of the labeling mechanism for bringing about correlations at a distance in a causal manner accords with the field-theoretic formalism.

Indeed, there is a simple line of argument which leads to the conclusion that Everett interpretation Heisenberg-picture quantum field theory must be local. The dynamical variables of the theory are field operators defined at each point in space, whose dynamical evolution is described by local (Lorentz-invariant, in the relativistic case) differential equations. And the Everett interpretation removes nonlocal reduction of the wavefunction from the formalism. So how can nonlocality enter the scene?

This argument as it stands is incorrect, but it can be modified so that its conclusion, the locality of Everett-interpretation Heisenberg-picture quantum field theory, holds. What is wrong is the following: While it is certainly true that operators in Heisenberg-picture quantum field theory evolve according to local differential equations, it is not in general true that all of the information needed to determine the outcomes and probabilities of measurements is contained in these operators. Initial-condition information, needed to determine probabilities, resides in the time-independent Heisenberg-picture state vector. Since not all information is carried in the operators, is incorrect to argue that the local evolution of the operators implies locality of the theory.

However, as discussed in Sec. 4 below, it turns out to be possible to transform from the usual representation of the Heisenberg-picture field theory to other representations in which the operators also carry the initial-condition information. So, in these representations, the simple argument above for the locality of Heisenberg-picture quantum field theory is valid. Bear in mind that in these representations the use of the Everett interpretation still is crucial for the theory to be local. As mentioned above, the Everett interpretation removes a source of explicit nonlocality in the theory (wavefunction collapse); it “defangs” the Bell argument that, notwithstanding the explicitly local transfer of information in the operators, something else of a nonlocal nature must be going on; and it provides labeling as an alternative to the “instruction set” mechanism which in single-outcome interpretations appears as the only explanation for correlations-at-a-distance and which is what ultimately leads to Bell’s theorem. This last issue of instruction sets and labels is no different in field theory than in first-quantized theory, and is discussed in Ref 22. In field theory as in first-quantized theory, interaction-induced transformations of Heisenberg-picture operators (field operators, of course, in the field theory case—see e.g., eq. (154) below) serve to encode the label information.
 
  • #23
JesseM said:
but would there be any way to break up the state of the whole wavefunction into a bunch of local chunks of information, in the way that the state of a whole classical field can be broken up into information about the force vectors at each point in space?

Hi !

Thanks for these papers. The first one I knew of, the second I'll have to read ; but in any way it comes rather close to the view I have concerning the locality (the *dynamical* locality) of QM. I should look closer at the formalism, but I would be surprised that a simple switch from the Schroedinger to the Heisenberg picture would solve the issue of the non-holisitic aspect of the theory in its description ; after all, they are mathematically equivalent !

But I think that on the issue of the "locality" required by relativity, all should be clear (in that it is satisfied in QM, so that nothing physically happens "at a distance"). No FTL telephone.

Concerning the Everett-like interpretations, I think it is hard not to consider them. When I say everett-like, I mean the idea that macroscopic systems can be in a superposition of classical states ; I do not think however that the Everett program itself will ever work out (that we can derive an "effective Born rule" from unitary QM) ; I'm convinced that there is some 'real physics' in the Born rule itself. People like Penrose think it has something to do with gravity - but everything done recently in that area seems to point out to the contrary ; namely that gravity will not alter the superposition principle.

cheers,
Patrick.
 
  • #24
JesseM said:
But if one favors the Everett interpretation, then under this interpretation quantum theory would be realist--the wavefunction of the universe would be a complete description of the universe at any given moment.

The problem is that then, every physical theory is realist (the word looses its meaning). After all, no matter what theory, its formalism will be "real" in the Platonic sense and is the "machinery that produces the numbers I observe", so the "real description" of the universe.

I saw "realism" as a more constrained way, in that "what is observed is really there, locally encoded in the thing we're observing". So if I see an electron with a spin-up, because that's what my detector says, then I say that there really is an electron with a spin up, and it is spin up even if I wouldn't have observed it. And that's of course NOT possible in QM. The only thing that QM says is that the part of my state that corresponds to my conscient observation that I experience is entangled with the part of the electron's state that has spin up, but there can (or cannot) be other parts of the electron's state that are different (say, spin down), but of which I will never hear again. So the "realism" has shifted from "it is really there" to "a relationship between me, my observations, and part of what's there".


cheers,
Patrick.
 
  • #25
Hans de Vries said:
Let's see. are you assuming here that for the case of 45 degrees Bell
and entangled QM should be equal? That is, in the electron LR theory
of Bell?

The two differences here are
1) is that were looking at photons.
2) is that both a and b have equal angles.

So we have the 0 degrees case here. See figure 4 of Aspect
http://www.drchinese.com/David/EPR_Bell_Aspect.htm
and figure 3. of Caroline's paper which shows the idealized QM and LR
curves. http://arxiv.org/abs/quant-ph/9903066

Hans,

I looked at the references. Here is my point:

a. The Local Realist (LR) position in 1935 was that the predictions of QM were correct, but was not a complete specification of the system. Therefore P(QM)=P(LR) and the curve Caroline shows as the LR curve in her paper was not representative of the general LR position at that time. Perhaps there was a camp back then that predicted her LR curve [tex]1/8+1/4cos^2\theta[/tex] but I am completely unaware of that from a historical perspective.

b. After Bell showed the flaw in the above thinking (i.e. that LR could NOT successfully mimic QM), there have clearly been some folks who have tried to develop alternatives. It is true that the [tex]1/8+1/4cos^2\theta[/tex] fits nicely into the area which falls within the Inequalities and fits with the concept that there is no entanglement. I don't recall seeing a single reference to such predictions FOR ENTANGLED PHOTONS other than Caroline's references to it. I am not saying they aren't out there, I just haven't seen them once in looking at plenty of books and papers on the subject.

c. The obvious explanation of that to me is that there has never been any serious support for that position, given the existence and success of QM. A review of the usual EPR test papers will show that the comparision of experimental results is always between the QM prediction and the bounds of the Bell Inequality being tested. The "LR predicted" value is never presented because there is no such commonly accepted value. That would change if future experiments yielded a different set of results.
 
  • #26
vanesch said:
The problem is that then, every physical theory is realist (the word looses its meaning). After all, no matter what theory, its formalism will be "real" in the Platonic sense and is the "machinery that produces the numbers I observe", so the "real description" of the universe.

I saw "realism" as a more constrained way, in that "what is observed is really there, locally encoded in the thing we're observing". So if I see an electron with a spin-up, because that's what my detector says, then I say that there really is an electron with a spin up, and it is spin up even if I wouldn't have observed it. And that's of course NOT possible in QM. The only thing that QM says is that the part of my state that corresponds to my conscient observation that I experience is entangled with the part of the electron's state that has spin up, but there can (or cannot) be other parts of the electron's state that are different (say, spin down), but of which I will never hear again. So the "realism" has shifted from "it is really there" to "a relationship between me, my observations, and part of what's there".


cheers,
Patrick.
At one point when I was thinking about how the Everett interpretation could explain the results of the EPR experiment in a local realist way, I came up with the following analogy to show how in principle an Everett-like interpretation could do this:
say Bob and Alice are each receiving one of an entangled pair of photons, and their decisions about which spin axis to measure are totally deterministic, so the only "splitting" necessary is in the different possible results of their measurements. Label the three spin axes a, b, and c. If they always find opposite spins when they both measure their photons along the same axis, a local hidden-variables theory would say that if they choose different axes, the probability they get opposite spins must be at least 5/9 (assuming there's no correlation between their choice of which axes to measure and the states of the photons before they make the measurement). I forgot what the actual probability of opposite spins along different axes ends up being in this type of experiment, but all that's important is that it's less than 5/9, so for the sake of the argument let's say it's 1/3.

So suppose Bob's decision will be to measure along axis a, and Alice's decision will be to measure along axis c. When they do this, suppose each splits into 6 parallel versions, 3 measuring spin + and 3 measuring spin -. Label the 6 Bobs like this:

Bob 1: a+
Bob 2: a+
Bob 3: a+
Bob 4: a-
Bob 5: a-
Bob 6: a-

Similarly, label the 6 Alices like this:

Alice 1: c+
Alice 2: c+
Alice 3: c+
Alice 4: c-
Alice 5: c-
Alice 6: c-

Note that the decision of how they split is based only on the assumption that each has a 50% chance of getting + and a 50% chance of getting - on whatever axis they choose, no knowledge about what the other one was doing was needed. And again, only when a signal traveling at the speed of light or slower passes from one to the other does the universe need to decide which Alice shares the same world with which Bob...when that happens, they can be matched up like this:

Alice 1 (c+) <--> Bob 1 (a+)
Alice 2 (c+) <--> Bob 2 (a+)
Alice 3 (c+) <--> Bob 4 (a-)
Alice 4 (c-) <--> Bob 3 (a+)
Alice 5 (c-) <--> Bob 5 (a-)
Alice 6 (c-) <--> Bob 6 (a-)

This insures that each one has a 2/3 chance of finding out the other got the same spin, and a 1/3 chance that the other got the opposite spin. If Bob and Alice were two A.I.'s running on classical computers in realtime, you could simulate Bob on one computer and Alice on another, make copies of each according to purely local rules whenever each measured a quantum particle, and then use this type of matching rule to decide which of the signals from the various copies of Alice will be passed on to which copy of Bob, and you wouldn't have to make that decision until the information from the computer simulating Alice was actually transmitted to the computer simulating Bob. So using purely local rules you could insure that, after many trials like this, a randomly-selected copy of A.I. Bob or A.I. Alice would record the same type of statistics that's seen in the Aspect experiment, including the violation of Bell's inequality.

Note that you wouldn't have to simulate any hidden variables in this case--you only have to decide what the spin was along the axes each one measured, you never have to decide what the spin along the other 2 unmeasured axes of each photon was.
Now, I realize that the various Everett interpretations are not so straightforward--in my computer simulation above, probability has a clear frequentist meaning, while the problem of getting a notion of "probability" out of any version of the Everett interpretation is notoriously difficult, and perhaps it can't work at all without tacking on extra assumptions. Still, I got the impression that this was the general type of explanation that Mark Rubin was aiming for in his papers, where each observation creates a local splitting of the observer, but the observations of spatially separated observers are only mapped to each other once a signal has had the chance to pass between them.
 
  • #27
Hans de Vries said:
The alternative local model: We presume that both photons share a property because they are entangled. They are more
equal then other seemingly equal photons.

This sounds to me like a standard local hidden variables theory. As such it would have to obey Bell's inequality, and so disagrees with the results of the Aspect experiments.

I have to say that I do tend towards believing in local realism (although I don't like the 'realism' bit, see http://www.chronon.org/Articles/localreal.html),and I hope for either the success of Caroline Thompson's attack on the statistics of the experiments, or for an explanation in terms of subluminal (but maybe 'spooky') transfer of information between the detectors. But I don't see Hans' model as succeeding.
 
  • #28
chronon said:
This sounds to me like a standard local hidden variables theory. As such it would have to obey Bell's inequality, and so disagrees with the results of the Aspect experiments.

The word "hidden variables" is always used in combination with non-
commuting quantities. This is not the case here with the extra degrees
of freedom.


Regards, Hans
 
  • #29
Hans de Vries said:
The word "hidden variables" is always used in combination with non-
commuting quantities. This is not the case here with the extra degrees
of freedom. Regards, Hans
So "hidden variables" means something else, and as I've said I don't like the term "realist" being used for this.
vanesch said:
The problem is that then, every physical theory is realist (the word looses its meaning).
Indeed. I don't think that the words "non-realist theory" have any meaning.

But let's be clear about what Bell tells us. Suppose we have two detectors A and B with experimenters who are free to choose the settings of the detectors. If Bell's inequalities are violated, then any model which agrees with the results must have something corresponding to information exchange between A and B.
 
  • #30
chronon said:
But let's be clear about what Bell tells us. Suppose we have two detectors A and B with experimenters who are free to choose the settings of the detectors. If Bell's inequalities are violated, then any model which agrees with the results must have something corresponding to information exchange between A and B.
But the information exchange doesn't necessarily have to be faster than light--see my thought-experiment above involving two simulated experimenters, Alice and Bob who split into multiple copies when they make a measurement, and the simulation doesn't have to decide which Alice-copy is mapped to which Bob-copy until there has been time for a signal moving at light speed to pass between them. The Everett interpretation isn't as simple as this, but the thought-experiment shows that in principle you can have a local realist theory (without hidden variables, though) in which the Bell inequalities are violated.
 
  • #31
chronon said:
But let's be clear about what Bell tells us. Suppose we have two detectors A and B with experimenters who are free to choose the settings of the detectors. If Bell's inequalities are violated, then any model which agrees with the results must have something corresponding to information exchange between A and B.

Yes, and that something is the state of the observer which goes from A to B to check the correlations!
The trick is that for the observer at A (the one, for instance who will do the travelling), there IS NO DEFINITE RESULT at B as long as he didn't go there to check. It is when you insist on the definiteness of the remote result, before you can check it, that *something corresponding to information exchange* must travel FTL between A and B. But if all that is done at B remains in a superposition until A checks it (and it is only at that moment that A can verify the correlation), then it is whatever travels from A to B (or from B to A, or from A to X and B to X) that carries with it "the information needed", which corresponds to the "choice of the partial statevector" that has been made when A had to decide on which branch its sentient experience was now going to live (according to Born's rule).

When, however, you insist on the "reality" of the measurement at A and the "reality of the measurement" at B, and you insist on the fact that every correlation must have a causal origin, then yes, "something" must travel from A to B and from B to A forward and backward in time. But as that "reality" cannot be checked by a real transmission of information FTL, that "something" remains very vague! It is then left to the opinion of the interpreter to accept such a "something" which will never have any verifiable influence and call it collapse at a distance, or to accept that there is not such a "something" but that macroscopic objects, such as persons, can exist in superposed states.
My preference goes to the second possibility. Not because I find this exciting or so, but because it introduces the least new elements in the existing theory ; especially the necessary introduction of a "something" which communicates at a distance but in such a way that we will never be able to use it to communicate at a distance, relativity obliging, and which happens or not, according to whether a physical process is called a measurement or an interaction.


cheers,
Patrick.
 
  • #32
vanesch said:
Yes, and that something is the state of the observer which goes from A to B to check the correlations!
The trick is that for the observer at A (the one, for instance who will do the travelling), there IS NO DEFINITE RESULT at B as long as he didn't go there to check.

But what if there are two experimenters one at A and one at B? If they then get together to compare results, you seem to be claiming that the one from A could say to the one from B. "Yes, I realize that you claim to have made a definite measurement at B, but from my point of view that wasn't a real event. In fact you are just part of a superposition which only resolved itself when we met."

You say you think this involves the least new elements, but it still needs "something" which causes our minds to divide when faced with a superposition, which I find far less acceptable than a non-local influence.
 
  • #33
chronon said:
You say you think this involves the least new elements, but it still needs "something" which causes our minds to divide when faced with a superposition, which I find far less acceptable than a non-local influence.

This is indeed a matter of personal opinion, and you hit the nail on its head: I think that this is the true content of the physics of the Born rule and that you cannot leave it out and derive it from strictly unitary QM. So you can say that unitary QM is the physics of the universe, and the Born rule is the physics of the mind. It is just a personal, maybe strange, but - I think - coherent viewpoint. But it has one practical consequence, or almost so: if you take that viewpoint, you will not bother trying to make a FTL telephone with entangled states, trying to use "collapse at a distance" in order to force somehow what is proven not to be able to exist in QM :smile:

Now if you *really* want my personal opinion, I don't take my opinion very seriously, but take it just as a means to reason in QM, as it stands. It avoids me a lot of traps which are often invited by the smalltalk that goes into EPR and quantum erasure papers, and which come down (IMHO) to applying the Born postulate too early.
One thing is sure in QM: when you apply the Born postulate only COMPLETELY AT THE END of your calculation, for the quantity that you want to plot in your paper, you NEVER make an error. If you apply it earlier, you can get away with it if you are very careful. If you apply it too early, you have an FTL telephone and you made an error against QM theory.

I am completely open on the seriousness with which you have to take all this. If indeed, say, gravity DOES somehow induce the collapse in QM, then this changes completely the picture. But I wasn't talking about an interpretion of _that_ hypothetical theory of which I'm even not aware of the formalism. I'm talking about a way of seeing _current_ QM theory. What *really* happens, I just don't know, and I think that everybody who claims to know is fooling him/herself.


cheers,
Patrick.
 
  • #34
chronon said:
But what if there are two experimenters one at A and one at B? If they then get together to compare results, you seem to be claiming that the one from A could say to the one from B. "Yes, I realize that you claim to have made a definite measurement at B, but from my point of view that wasn't a real event. In fact you are just part of a superposition which only resolved itself when we met."

Exactly ! As seen from the "I" experience of A.
The "I" experience seems to require that it can only observe a product state of the self and the rest of the universe ; call it the "self-awareness" or whatever. It seems not to support entanglement with the universe. So that "I" experience HAS to choose when it undergoes a physical interaction which entangles its physical structure with something else, and that choice is dictated by the Born rule.

So if A and B are two friends, and they get apart, do an EPR experiment and then come together, there's a possibility that the "I" experience of A now talks to the CLONE of B, while B's "I" experience is now in another branch. There's no way for A to find out that he's now separated from his friend forever, and has to deal with a clone :bugeye: :bugeye:

Try to explain that to your wife/girlfriend when cheating on her :rolleyes: :rolleyes: :tongue:

cheers,
Patrick.
 
  • #35
I think you can put it this way:

If the Bell inequalities are still violated when you have two experimenters choosing the detector settings at spacelike separation,
then either
(1) Your model must have something corresponding to FTL communication
or
(2) Your model must include the minds of the experimenters

I agree that this is a matter of personal opinion, but I can think of several arguments against (2)

(a) You are trying to model a system consisting of lasers and detectors. Why should you need to bring in the unrelated subject of mental workings.

(b) It moves towards non-falsifiability. If results disagree with your model you can keep the model, just change what the experimenters minds end up believing.

(c) It can be seen as a delaying tactic. By introducing mental workings, which we are unlikely to understand for several decades, it means we can go on using hand-waving arguments.

vanesch said:
you will not bother trying to make a FTL telephone with entangled states, trying to use "collapse at a distance" in order to force somehow what is proven not to be able to exist in QM :smile:
I think people will always try to use the results to make an FTL telephone. In case (1) you can think that maybe you can utilise the underlying FTL information transfer, but in case (2) you can think that maybe the recipient gets a random signal but you can arrange things so that you end up in the universe when they get the message you sent.
 
<h2>1. What is the Aspect/Innsbruck Interpretation?</h2><p>The Aspect/Innsbruck Interpretation is a quantum mechanical interpretation that aims to reconcile the principles of special relativity with the non-locality observed in quantum entanglement experiments.</p><h2>2. How does the Aspect/Innsbruck Interpretation respect SR locality?</h2><p>The Aspect/Innsbruck Interpretation respects SR locality by proposing that the non-locality observed in quantum entanglement experiments is due to a hidden variable that is not yet understood. This hidden variable ensures that no information can be transmitted faster than the speed of light, in accordance with the principles of special relativity.</p><h2>3. What is the role of entanglement in the Aspect/Innsbruck Interpretation?</h2><p>Entanglement plays a crucial role in the Aspect/Innsbruck Interpretation as it is the phenomenon that appears to violate the principles of special relativity. The interpretation suggests that entanglement is a result of the hidden variable, and not a violation of locality.</p><h2>4. How does the Aspect/Innsbruck Interpretation differ from other interpretations of quantum mechanics?</h2><p>The Aspect/Innsbruck Interpretation differs from other interpretations of quantum mechanics in that it does not reject the principles of special relativity. Other interpretations, such as the Copenhagen Interpretation, propose that quantum mechanics is inherently non-local and that the principles of special relativity may need to be modified.</p><h2>5. What are some potential implications of the Aspect/Innsbruck Interpretation?</h2><p>The Aspect/Innsbruck Interpretation has the potential to provide a more complete understanding of the underlying mechanisms of quantum mechanics and reconcile them with the principles of special relativity. It may also have implications for technologies that rely on quantum entanglement, such as quantum computing and cryptography.</p>

1. What is the Aspect/Innsbruck Interpretation?

The Aspect/Innsbruck Interpretation is a quantum mechanical interpretation that aims to reconcile the principles of special relativity with the non-locality observed in quantum entanglement experiments.

2. How does the Aspect/Innsbruck Interpretation respect SR locality?

The Aspect/Innsbruck Interpretation respects SR locality by proposing that the non-locality observed in quantum entanglement experiments is due to a hidden variable that is not yet understood. This hidden variable ensures that no information can be transmitted faster than the speed of light, in accordance with the principles of special relativity.

3. What is the role of entanglement in the Aspect/Innsbruck Interpretation?

Entanglement plays a crucial role in the Aspect/Innsbruck Interpretation as it is the phenomenon that appears to violate the principles of special relativity. The interpretation suggests that entanglement is a result of the hidden variable, and not a violation of locality.

4. How does the Aspect/Innsbruck Interpretation differ from other interpretations of quantum mechanics?

The Aspect/Innsbruck Interpretation differs from other interpretations of quantum mechanics in that it does not reject the principles of special relativity. Other interpretations, such as the Copenhagen Interpretation, propose that quantum mechanics is inherently non-local and that the principles of special relativity may need to be modified.

5. What are some potential implications of the Aspect/Innsbruck Interpretation?

The Aspect/Innsbruck Interpretation has the potential to provide a more complete understanding of the underlying mechanisms of quantum mechanics and reconcile them with the principles of special relativity. It may also have implications for technologies that rely on quantum entanglement, such as quantum computing and cryptography.

Similar threads

  • Quantum Interpretations and Foundations
3
Replies
96
Views
4K
  • Quantum Interpretations and Foundations
Replies
31
Views
1K
  • Quantum Interpretations and Foundations
6
Replies
175
Views
6K
  • Quantum Interpretations and Foundations
3
Replies
81
Views
5K
  • Quantum Interpretations and Foundations
2
Replies
54
Views
3K
  • Quantum Interpretations and Foundations
2
Replies
45
Views
3K
  • Quantum Interpretations and Foundations
2
Replies
37
Views
1K
  • Quantum Interpretations and Foundations
3
Replies
79
Views
5K
  • Quantum Interpretations and Foundations
2
Replies
37
Views
1K
Replies
2
Views
920
Back
Top