(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Consider an asteroid with an iron core [itex] \rho_m = 8000 kg\; m^{-3} [/itex] covered by a thin silicate mantle [itex] \rho_m = 3500 kg\; m^{-3} [/itex] with a thickness of 20% the raidus R of the asteroid.

Assume that the internal temp is [itex] T_i = 600K[/itex] and is constant throughout the core due to high thermal conductivity of iron. Take the thermal energy in the core to be [itex] 3k T_i[/itex] per atom and assume that the thermal conductivity is [itex] k_c = 2 W\; m^{-1} K^{-1} [/itex]. Ignore the heat capacity of of the mantle. If the surface has a temp of [itex] T_s = 200K [/itex], find the value of R for which the cooling rate is about 1 K per million years

2. Relevant equations

[tex] \frac{dQ}{dt} = -k_c A \frac{dT}{dx} [/tex]

A is the surface area

3. The attempt at a solution

There's a few things that are confusing me right off the bat. What is the k is the thermal energy of the core [itex] 3k T_i[/itex]? There is no reference to it in any of the literature, so I find it rather ambiguous which doesn't help my situation.

I started by saying that [itex] \frac{dT}{dx} = \frac{ T_i - T_s}{0.8 R} [/itex] in an approximating sense, using that the iron core is 80% of the asteroid. Then I assumed a spherical asteroid and subbed this into the above equation to get

[tex]\frac{dQ}{dt} = 5 \pi R k_c (T_i - T_s) [/tex]

Now I'm kinda stuck. I want to say something about the heat production like

[tex] \frac{dQ}{dt} = ML [/tex] where M is the mass and L is the energy production, however I'm not sure how to find energy production (something to do with the [itex] 3k T_i [/itex]?). And then where does the 1K per million years come in?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Asteroid Cooling

**Physics Forums | Science Articles, Homework Help, Discussion**