Astronomy Spectroscopy help (1 Viewer)

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

NIQ

11
0
Hello all,

I am currently doing a 3rd year Astronomy and Astrophysics course and I am having some trouble with the current problem set (this is mainly because our teacher doesn't really teach us anything but that's another story).

This is the question in particular that is bothering me:
2) Let’s assume that Star A has surface temperature of 10000 K and moving away from us at 1000 km/s. First, draw (or sketch) its observed continuum radiation in the 0.1 – 2.0 micron range. Specify the wavelength where the continuum emission is most intense. What’s the dynamic range (=maximum/minimum) of the continuum emission in the given wavelength range?

I tried looking on the internet for continuum radiation (and later found that its also called braking radiation or Bremsstrahlung) but I could not find anything useful.

So I was wondering if anyone could give me a quick lesson on how I would sketch this continuum radiation in this range? Should I find a function using the electron transition equations?

I am really clueless here and any help would be really appreciated.

Thanks,
Nick.
 

NIQ

11
0
Ok I see what he is asking now... he just wants the blackbody graph in this range.
 

George Jones

Staff Emeritus
Science Advisor
Gold Member
7,112
661
NIQ said:
Ok I see what he is asking now... he just wants the blackbody graph in this range.
Right, but don't forget about the Doppler shift.

Find the curve for a 10000 k blackbody, and then make the shift to longer wavelengths that is appropriate for a source recessional velocity of 1000 km/s.
 

NIQ

11
0
Yeah I remembered to do that, although the shift for 1000km/s is hardly noticeable anyways.
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top