let be [tex] f(x) \sim g(x) [/tex] , in the sense that for big x f(x) is asymptotic to g(x) , my question if what happens to their Laplace transform ??(adsbygoogle = window.adsbygoogle || []).push({});

i belive that [tex] \int _{0}^{\infty}dt f(t)exp(-st) \approx \int _{0}^{\infty}dt g(t)exp(-st) [/tex]

in first approximation the Laplace transform of f(x) and the Laplace transform of g(x) must be equal.

another question if we had a Linear operator L so we can define its inverse L^{-1} is it true that [tex] f(x) \sim L(g(x)) \rightarrow L^{-1} f(x)= g(x) [/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Asymptotic analysis question

**Physics Forums | Science Articles, Homework Help, Discussion**