- #1

- 22

- 0

What is an asymptotic function. How do you integrate it?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- B
- Thread starter Debaa
- Start date

- #1

- 22

- 0

What is an asymptotic function. How do you integrate it?

- #2

Ssnow

Gold Member

- 553

- 166

For example the Taylor expansion gives you a polynomial that has the same behaviour of ##g##. The Taylor expansion is not always practicable. In mathematics there is a notation used in the asymptotic expansion called ''big-##O##'' notation.

For discrete functions ##f(n)=O(g(n))## if ##g## is an upper bound on ## f ##: there exists a fixed constant ##c## and a fixed ##n_{0}## such that for all ##n≥n_{0}##,

##f(n) ≤ cg(n)##.

We say ##f## is ##o(g(n))## (read: "##f## is little-##o## of ##g##'') if for all arbitrarily small real ##c > 0##, for all but perhaps finitely many ##n##,

##f(n) ≤ cg(n)##.

We say that f is ##\Theta(g(n))## (read: "##f## is theta of ##g##") if ##g## is an accurate characterization of ##f## for large ##n##: it can be scaled so it is both an upper and a lower bound of ##f##.

Details of Taylor expansion, ##O##-notation, or asymptotic analysis are in https://en.wikipedia.org/wiki/Taylor_series , https://en.wikipedia.org/wiki/Big_O_notation , https://en.wikipedia.org/wiki/Asymptotic_analysis

Ssnow

- #3

- 22

- 0

Thanks

For example the Taylor expansion gives you a polynomial that has the same behaviour of ##g##. The Taylor expansion is not always practicable. In mathematics there is a notation used in the asymptotic expansion called ''big-##O##'' notation.

For discrete functions ##f(n)=O(g(n))## if ##g## is an upper bound on ## f ##: there exists a fixed constant ##c## and a fixed ##n_{0}## such that for all ##n≥n_{0}##,

##f(n) ≤ cg(n)##.

We say ##f## is ##o(g(n))## (read: "##f## is little-##o## of ##g##'') if for all arbitrarily small real ##c > 0##, for all but perhaps finitely many ##n##,

##f(n) ≤ cg(n)##.

We say that f is ##\Theta(g(n))## (read: "##f## is theta of ##g##") if ##g## is an accurate characterization of ##f## for large ##n##: it can be scaled so it is both an upper and a lower bound of ##f##.

Details of Taylor expansion, ##O##-notation, or asymptotic analysis are in https://en.wikipedia.org/wiki/Taylor_series , https://en.wikipedia.org/wiki/Big_O_notation , https://en.wikipedia.org/wiki/Asymptotic_analysis

Ssnow

Share: