Hello. This is question for my course work, I was wondering if I could get some insight, here is the question:(adsbygoogle = window.adsbygoogle || []).push({});

Assume that the vast majority of the photons in the present Universe are cosmic microwave radiation photons that are a relic of the big bang. For simplicity, also assume that all the photons have the energy corresponding to the wavelength of the peak of a 2.73K black-body radiation curve. At Approximately what redshift will the energy density in radiation be equal to the energy density in matter?

(hint: work out the energy density in photons at the present time. Then work it out for baryons, assuming a proton for a typical baryon. Remember how the two quantities scale with redshift to work out when the energy density is the same.)

[tex]

\rho_M \propto a^{-3}

[/tex]

[tex]

\rho_\gamma \propto a^{-4}

[/tex]

[tex]

T \propto a^{-1}

[/tex]

[tex]

1 + z = \frac{v}{v_0} = \frac{\lambda_0}{\lambda} = \frac{a(t_0)}{a(t)}

[/tex]

How can I calculate the energy density of photons and protons at the present time? Do I use E = mc^2?

**Physics Forums - The Fusion of Science and Community**

# At what redshift does energy density in matter equal energy density in radiation?

Have something to add?

- Similar discussions for: At what redshift does energy density in matter equal energy density in radiation?

Loading...

**Physics Forums - The Fusion of Science and Community**