(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I'm considering a non-linear chiral theory where the Lagrangian is in terms of the field #\Sigma = e^{\frac{2i\pi}{f}}# where #\pi# is my pion matrix containing pion, kaon, and #\eta#. I need to calculate the transformation of #\pi# up to order #\pi^2# under an axial transformation where #R=L^\dagger#. We're given that under #SU(3)_R \times SU(3)_R# transformations, #\Sigma# transforms as #\Sigma \to L \Sigma R^\dagger#.

2. Relevant equations

3. The attempt at a solution

$$\Sigma \to L\Sigma R^\dagger$$

$$= L \left( 1 + \frac{2i\pi}{f} + \frac{4i^2}{2 f^2} \pi^2 + \ldots \right) R^\dagger$$.

Now use $R = L^\dagger$. So,

$$= R^\dagger \left( 1 + \frac{2i\pi}{f} + \frac{4i^2}{2 f^2} \pi^2 + \ldots \right) R^\dagger\\

= R^\dagger R^\dagger + \frac{2i}{f} R^\dagger \pi R^\dagger + \frac{4i^2}{2 f^2} R^\dagger \pi R^\dagger R \pi R^\dagger + \ldots $$

Not sure where to go from here.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Axial Transformation of a pion

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**