1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B Axiomatic system and proof.

  1. May 26, 2017 #1
    Hi, I have a question about axiomatic system and proof.

    Let's say we have a finite sequence of propositions ai, which is an axiomatic system.
    To prove a proposition P that is a finite sequence of propositions qi with axiomatic system {ai}, we can take 3 methodologies.

    (A) qi itself is equivalent to one of the propositions of axiomatic system.
    (T) Tautology
    (M) Modus Ponens.

    But what makes me uncomfortable is (T) tautology. It acts as deus ex machina "within" the proposition P that is examined with axiomatic system.

    I believe an axiomatic system is justified by (T) because it justifies propositions by itself, but I wonder why we can use tautology within the propositions P which is under examination of axiomatic system. Because if we can use tautology, inside the proposition P, any proposition can be essentially justified within P regardless of the given axiomatic system (we can justify any qi with tautology).

    Could anyone please enlighten me why we are allowed to use tautology (T) within a sequence of propositions P? which questions me why we have a separate axiomatic system although we can justify the sequence by itself.
  2. jcsd
  3. May 26, 2017 #2

    Stephen Tashi

    User Avatar
    Science Advisor

    It's not clear what would mean to prove something by tautology. The word "tautology" describes the the form of a statement. By the usual meaning of "tautology" , a "tautology" is a logical equivalence, not a method of proof.
  4. May 27, 2017 #3

    Ah I get it. thanks!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted