- #1

- 72

- 0

For a magnetostatics problem I seek the solution to the following equation

[tex] \frac{1}{x}\frac{d}{dx} \left( x \frac{dy(x)}{dx} \right) = -C^2 y(x) [/tex]

(C a real constant) or equivalently

[tex]x \frac{d^2 y(x)}{dx^2} + \frac{dy(x)}{dx} + C^2 x y(x)=0[/tex]

It seems so simple, but finding a particular solution beats me...is this solvable?

[tex] \frac{1}{x}\frac{d}{dx} \left( x \frac{dy(x)}{dx} \right) = -C^2 y(x) [/tex]

(C a real constant) or equivalently

[tex]x \frac{d^2 y(x)}{dx^2} + \frac{dy(x)}{dx} + C^2 x y(x)=0[/tex]

It seems so simple, but finding a particular solution beats me...is this solvable?

Last edited: