• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Ballistic Pendulum Bullet

  • Thread starter rbrow039
  • Start date
1
0
1. Homework Statement
A 7.0-g bullet is fired into a 1.5-kg ballistic pendulum. The bullet emerges from the block with a speed of 200 m/s, and the block rises to a maximum height of 12 cm. Find the initial speed of the bullet.

Now I think this is an imperfect inelastic collision because the bullet does not lodge itself in the pendulum. So I assumed since it was inelastic I could ignore conservation of kinetic Energy.
2. Homework Equations
Conservation of Momentum
Conservation of Energy


3. The Attempt at a Solution
m1v1i +m2v2i=(m1 + m2)vf
(.007kg x v1i)+0=(1.507kg)vf

(PE + KE)collision=(PE + KE)top
0 + (.5 x 1.507 x vf^2)= mgh + .5mv^2
0 + (.5 x 1.507kg x vf^2) = (1.5 kg x 9.81m/s^2 x .12m) + (.5 x .007kg x 200^2)
vf^2=(1.7658J + 140J)/(.7535kg)
vf=13.716m/s

(.007kg x v1i)=1.507kg x 13.716m/s
v1i = 2952 m/s
Now I know this is not the answer because the answer is given as 530m/s but I can't for the life of me figure out what went wrong with the energy calculation. (I'm assuming that's where the big boo boo happened)
 

alphysicist

Homework Helper
2,238
1
Hi rbrow039,

1. Homework Statement
A 7.0-g bullet is fired into a 1.5-kg ballistic pendulum. The bullet emerges from the block with a speed of 200 m/s, and the block rises to a maximum height of 12 cm. Find the initial speed of the bullet.

Now I think this is an imperfect inelastic collision because the bullet does not lodge itself in the pendulum. So I assumed since it was inelastic I could ignore conservation of kinetic Energy.
2. Homework Equations
Conservation of Momentum
Conservation of Energy


3. The Attempt at a Solution
m1v1i +m2v2i=(m1 + m2)vf
I don't believe this formula is correct; this formula applies to a perfectly inelastic collision (where both objects stick together and move with the same speed vf after the collision). As you remarked, these objects do not stick together after the collision. What would the conservation of momentum equation be for this case? (And notice they give you the speed of the bullet right after the collision.)


(.007kg x v1i)+0=(1.507kg)vf

(PE + KE)collision=(PE + KE)top
0 + (.5 x 1.507 x vf^2)= mgh + .5mv^2
0 + (.5 x 1.507kg x vf^2) = (1.5 kg x 9.81m/s^2 x .12m) + (.5 x .007kg x 200^2)
With the change to the conservation of momentum equation for the collision, do you see how to correct your energy equation?
 

Related Threads for: Ballistic Pendulum Bullet

Replies
0
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
4K
Replies
2
Views
7K
  • Posted
Replies
6
Views
2K
  • Posted
Replies
2
Views
4K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top