- #1

- 8

- 0

*any*polynomial could be factored by using the Factor Theorem and synthetic division, but then I got to thinking: What if a polynomial has factors in the form (bx-a), as opposed to (x-a)? I can't find them with the Factor Theorem, so what do I do?

I imagine the answer will look something like this:

Given p(x) = (bx-a)(dx-c)(fx-e), I use the Factor Theorem to find the factors, (x-a/b), (x-c/d), (x-e/f), and bdf. Am I on the right track?