Integration is not one of my strong points, so I just wanted to make sure I did it correctly.(adsbygoogle = window.adsbygoogle || []).push({});

I am working with bullets and need to calculate volume, mass, angular mass, and centre of mass for use in my ballistics model. I have area, volume, and mass...but also need to figure out the solutions for angular mass and centre of mass.

To keep it simple, let's use astraight cone.

Definitions

[URL]http://latex.codecogs.com/png.latex?r&space;=&space;y(x)[/URL]

[URL]http://latex.codecogs.com/png.latex?s&space;\leq&space;s_{x}[/URL]

Integrals

[URL]http://latex.codecogs.com/png.latex?\delta&space;A&space;=&space;\int{\delta&space;r}[/URL]

[URL]http://latex.codecogs.com/png.latex?\delta&space;V&space;=&space;2&space;\pi&space;\int{\delta&space;A}[/URL]

[URL]http://latex.codecogs.com/png.latex?\delta&space;m&space;=&space;\rho&space;\int{\delta&space;V}[/URL]

Solutions

[URL]http://latex.codecogs.com/png.latex?A&space;=&space;\int_{0}^{s}{\delta&space;r}&space;=&space;\left(&space;{s_{y}s&space;-&space;\frac{s^{2}s_{y}}{2&space;s_{x}}}&space;\right)[/URL]

[URL]http://latex.codecogs.com/png.latex?V&space;=&space;2&space;\pi&space;\int_{0}^{s}{\delta&space;A}&space;=&space;2&space;\pi&space;\left(&space;s_{y}s&space;-&space;\frac{s^{2}s_{y}}{2&space;s_{x}}&space;\right)[/URL]

[URL]http://latex.codecogs.com/png.latex?m&space;=&space;\rho&space;\int_{0}^{s}{\delta&space;V}&space;=&space;2&space;\pi\rho&space;\left(&space;s_{y}s&space;-&space;\frac{s^{2}s_{y}}{2&space;s_{x}}&space;\right)[/URL]

I am a little uncertain about angular mass and centre of mass though...

[URL]http://latex.codecogs.com/png.latex?\delta&space;m_{(\phi)}&space;=&space;\int{\delta&space;r^{2}\delta&space;m}&space;=&space;2&space;\pi\rho&space;\int{\delta&space;r^{3}}[/URL]

[URL]http://latex.codecogs.com/png.latex?m_{(\phi)}&space;=&space;2&space;\pi\rho&space;\int_{0}^{s}&space;\delta&space;r^{3}&space;=&space;2&space;\pi\rho&space;\left(&space;s_{y}s&space;-&space;\frac{s^{2}s_{y}}{2&space;s_{x}}&space;\right)^{3}[/URL]

[URL]http://latex.codecogs.com/png.latex?\delta&space;s_{(m)}&space;=&space;\frac{1}{m_{1}}&space;\int{\delta&space;r\delta&space;m}&space;=&space;\frac{2&space;\pi\rho}{m_{1}}&space;\int{\delta&space;r^{2}}[/URL]

[URL]http://latex.codecogs.com/png.latex?s_{(m)}&space;=&space;\frac{2&space;\pi\rho}{m_{1}}&space;\int_{0}^{s}&space;\delta&space;r^{2}&space;=&space;\frac{2&space;\pi\rho}{m_{1}}&space;\left(&space;s_{y}s&space;-&space;\frac{s^{2}s_{y}}{2&space;s_{x}}&space;\right)^{2}[/URL]

Is this correct, or am I completely out of my mind?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Basic integration, geometry

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads - Basic integration geometry | Date |
---|---|

B Basic integral | Oct 30, 2016 |

I Question on basic trig substitution with x = sin theta | May 29, 2016 |

Basic question on double integrals | Apr 2, 2015 |

Basic integration concept | Feb 19, 2014 |

Are the following two integrals equivalent? [basic] | Feb 5, 2013 |

**Physics Forums - The Fusion of Science and Community**