Basic Limit Question

  • Thread starter Zarlucicil
  • Start date
  • #1
13
2
This is a pretty basic limit question regarding the limit,

[tex] \lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = e [/tex]

Wolframalpha gives the following reasoning for this answer:

[tex] \lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = e^{\lim_{x \rightarrow \infty} x\ln{(1+\frac{1}{x})}} = e^{\lim_{t \rightarrow 0} \frac{\ln{(1+t)}}{t}} = e^{\lim_{t \rightarrow 0} \frac{ \frac{d\ln{(1+t)}}{dt}}{\frac{d}{dt}t}}= e^{\lim_{t \rightarrow 0} \frac{1}{1+t}} = e^1 [/tex]

My question is, by the same reasoning, why is the following not true? (where log is log base 10)

[tex] \lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = 10^{\lim_{x \rightarrow \infty} x\log{(1+\frac{1}{x})}} = 10^{\lim_{t \rightarrow 0} \frac{\log{(1+t)}}{t}} = 10^{\lim_{t \rightarrow 0} \frac{ \frac{d\log{(1+t)}}{dt}}{\frac{d}{dt}t}}= 10^{\lim_{t \rightarrow 0} \frac{1}{1+t}} = 10^1 [/tex]

Am I missing something??
 

Answers and Replies

  • #2
13
2
Wooooow, hold on, I understand what I did wrong...

The derivative of [tex] \log{(1+t)} [/tex] is NOT [tex] \frac{1}{1+t} [/tex] but rather [tex] \frac{1}{(1+t)\ln{10}} [/tex]

Sorry for wasting the time of those who've read this.
 

Related Threads on Basic Limit Question

  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
1
Views
1K
Replies
26
Views
506
  • Last Post
Replies
8
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
7
Views
2K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
1
Views
2K
Top