1. PF Contest - Win "Conquering the Physics GRE" book! Click Here to Enter
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Basic limit question

  1. Apr 14, 2010 #1
    1. The problem statement, all variables and given/known data

    f(t) = \lim_{k \to \infty} f_k(t) = \lim_{k \to \infty} \frac{1 - kt^2}{1 +
    kt^2} = \lim_{k \to \infty} \frac{\frac{1}{k} - t^2}{\frac{1}{k} +
    t^2} = \frac{0 - t^2}{0 + t^2} = - \frac{t^2}{t^2}

    What is the value of limit function [tex]f[/tex] when [tex]t = 0[/tex]? Is it [tex]0[/tex] or [tex]-1[/tex] or undefined? What is the reasoning behind it?

    Does anyone know any good websites or books to catch up on these material?

    2. Relevant equations

    3. The attempt at a solution
  2. jcsd
  3. Apr 14, 2010 #2


    User Avatar
    Science Advisor

    None of the above!

    If [itex]t\ne 0[/itex] then the limit is -1, obviously.

    If t= 0, go back to the original formula: if t= 0, then
    [tex]\frac{1- kt}{1+ kt}= \frac{1- 0}{1+ 0}= \frac{1}{1}= 1[/tex]
    which is independent of k. The limit, if t= 0, is 1.
  4. Apr 14, 2010 #3
    Thanks for your reply. I have one question about getting to the solution.

    When should I use the original formula first and when should I take the limit first?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Threads - Basic limit question Date
Basic limit question Feb 25, 2014
Basic epsilon and delta proofs, limits, quick questions. Dec 17, 2013
Basic Limit Question Sep 3, 2011
Limit problem, theory very basic question Aug 15, 2011
Basic question about limits Jun 5, 2010