Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Basic Probability Question

  1. Mar 24, 2007 #1
    Hi guys

    This one is kind of embarrassing, but its driving me crazy! I am working through some examples in a prob. book, to try and refresh my rusty stats and prob knowledge. There is a question that goes: "There are 8 olive, 4 black, and six brown socks in a drawer. Two are selected at random. What is (a) the probability that the two socks are the same color? (b) If they are the same color, what is the prob. that they are both olive?"

    I can figure out part (a), which is:

    [itex]
    \frac{\dbinom{4}{2}+\dbinom{8}{2}+\dbinom{6}{2}}{\dbinom{18}{2}}
    [/itex]

    But I cant figure out P(olive|same color). Can anyone help?

    Thanks
    Rory

    Oh BTW, this isnt a homework question - I can see the answer from the back of the book is 4/7 - Im just curious to see how the author got it! Thanks.
     
    Last edited: Mar 24, 2007
  2. jcsd
  3. Mar 24, 2007 #2

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    How many pairs of socks of the same colour are there? (Hint: you've alread worked that out) How many pairs of olive socks are there? (Hint: you've already worked that out as well).


    You can read off the answer from what you wrote above.
     
  4. Mar 24, 2007 #3
    Hi Matt

    thanks for the reply. I think Im being dense here, but I still cant see the solution - there are (8/2) + (4/2) + (6/2) = 9 unique pairs, and 4 of those pairs are olive. So I would have thought it would be more like (4/9)?

    Rory
     
  5. Mar 24, 2007 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    9 pairs? By your logic, if I have 3 socks, then there are 1.5 pairs of socks. There aren't there are 3. 3 choose 2. Not 3/2. If they're labelled a,b,c then the pairs are (a,b) (a,c) and (b,c). You used the binomial coefficients in the first post, so why have you stopped using them now?
     
  6. Mar 25, 2007 #5
    You can use conditional probability: P(B|A)={P(A) intersection P(B)}/P(A).

    The probability of B given A is equal to the probability of A intersection B divided by the probability of A.
     
    Last edited: Mar 25, 2007
  7. Mar 26, 2007 #6
    Thanks for the help - it dawned on me eventually :smile:

    [itex]
    \frac{\dbinom{8}{2}}{\dbinom{4}{2}+\dbinom{8}{2}+\dbinom{6}{2}}
    [/itex]
     
  8. Mar 26, 2007 #7
    What has happened is that the original sample space was 18x17/2 = 153 (pairs). The new sample space is only those cases where the pairs match, which is 49 pairs. Then we want to find the cases where the pairs are olive, which is 28 pairs, giving us the correct figure of 4/7. Completely logical problem.
     
    Last edited: Mar 26, 2007
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Basic Probability Question
Loading...