- #1
- 55
- 1
Can we explain the meaning of the modulus(absolute value) with these equations?
|x| > a
=>x > a or x < -a(if a [itex]\in[/itex] R+ and x [itex]\in[/itex] R if a [itex]\in[/itex] R-
|x|<a
=> -a < x < a if a [itex]\in[/itex] R+ and no solution if a [itex]\in[/itex] R-[itex]\cup[/itex]{0}
If yes, then examples please?(for instances in x and a)
Blindly apply these equations we can solve |x-1| >= 3 as x-1<= -3 or x-1 >=3
If yes then how can we solve a inequality like |x-1| - |x| + |2x+3| > 2x +4 using the same logical statements above?
|x| > a
=>x > a or x < -a(if a [itex]\in[/itex] R+ and x [itex]\in[/itex] R if a [itex]\in[/itex] R-
|x|<a
=> -a < x < a if a [itex]\in[/itex] R+ and no solution if a [itex]\in[/itex] R-[itex]\cup[/itex]{0}
If yes, then examples please?(for instances in x and a)
Blindly apply these equations we can solve |x-1| >= 3 as x-1<= -3 or x-1 >=3
If yes then how can we solve a inequality like |x-1| - |x| + |2x+3| > 2x +4 using the same logical statements above?