- #1

- 13

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Try hard
- Start date

- #1

- 13

- 0

- #2

- 695

- 0

My thoughts:

Suppose, without loss of generality, that the vectors that span S and T are linearly independant (otherwise, we may remove the dependant vectors without changing the span). (I'm also assuming that the vectors come from the same vector space). Let S = Span{s_1, ..., s_n} and T = Span{t_1, ..., t_m}.

The intersection of S and T = {x; x = s_1a_1 + ... + s_na_n and x = t_1b_1 + ... t_mb_m, for some scalars a_1, ..., a_n, etc} = {the set of all solutions in a_1, etc to s_1a_1 + ... + s_na_n = t_1b_1 + ... t_mb_m}. Thus, finding a basis for the intersection is equivalent to finding a basis for the solution space of that particular equation. While I don't know how to proceed in the general case, it should be pretty easy for R^n, say. An example in R^3:

S = Span{ [1,1,1], [3,0,2] }

T = Span{ [0,2,1], [5,1,0] }

We're looking for a basis for the solution space to this equation:

a[1,1,1] + b[3,0,2] - c[0,2,1] - d[5,1,0] = [0,0,0]

<=>

[a + 3b + 5d, a - 2c + d, a + 2b - c] = [0,0,0]

<=>

{ a + 3b + 5d = 0

{ a - 2c - d = 0

{ a + 2b - c = 0

<=>

{ a = -17t

{ b = 4t

{ c = -9t

{ d = t, t is any scalar.

I.e. any vector in the intersection can be written on the form a[1,1,1] + b[3,0,2] = -17t[1,1,1] + 4t[3,0,2] = t[5,-17,-9], so { [5, -17, -9] } is a basis for the intersection.

Suppose, without loss of generality, that the vectors that span S and T are linearly independant (otherwise, we may remove the dependant vectors without changing the span). (I'm also assuming that the vectors come from the same vector space). Let S = Span{s_1, ..., s_n} and T = Span{t_1, ..., t_m}.

The intersection of S and T = {x; x = s_1a_1 + ... + s_na_n and x = t_1b_1 + ... t_mb_m, for some scalars a_1, ..., a_n, etc} = {the set of all solutions in a_1, etc to s_1a_1 + ... + s_na_n = t_1b_1 + ... t_mb_m}. Thus, finding a basis for the intersection is equivalent to finding a basis for the solution space of that particular equation. While I don't know how to proceed in the general case, it should be pretty easy for R^n, say. An example in R^3:

S = Span{ [1,1,1], [3,0,2] }

T = Span{ [0,2,1], [5,1,0] }

We're looking for a basis for the solution space to this equation:

a[1,1,1] + b[3,0,2] - c[0,2,1] - d[5,1,0] = [0,0,0]

<=>

[a + 3b + 5d, a - 2c + d, a + 2b - c] = [0,0,0]

<=>

{ a + 3b + 5d = 0

{ a - 2c - d = 0

{ a + 2b - c = 0

<=>

{ a = -17t

{ b = 4t

{ c = -9t

{ d = t, t is any scalar.

I.e. any vector in the intersection can be written on the form a[1,1,1] + b[3,0,2] = -17t[1,1,1] + 4t[3,0,2] = t[5,-17,-9], so { [5, -17, -9] } is a basis for the intersection.

Last edited:

- #3

mathwonk

Science Advisor

Homework Helper

2020 Award

- 11,154

- 1,349

e.g. if V1,...,Vn is a basis for one space, and if W1,...,Wm is a basis for the second space, first find a basis X1,...,Xr for the space of vectors perpendicular to all the V's.

Then find a basis Y1,...Ys for the vectors perpendicular to all the W's.

Then finally find a basis for all the vectors perpendicular to all the X's and Y's.

Share:

- Replies
- 6

- Views
- 19K

- Replies
- 5

- Views
- 4K