- #26

- 55

- 0

- Thread starter sundrops
- Start date

- #26

- 55

- 0

- #27

- 1

- 0

How did you get this equation?vincentchan said:[tex]y = tan(38)x - \frac{g x^2}{2 v_{0}^2 cos^2(38)} [/tex]

- #28

Päällikkö

Homework Helper

- 519

- 11

[tex]\left\{ \begin{array}{l}ThetaInitial said:How did you get this equation?

y = y_0+v_{y0}t+\frac{1}{2}a_yt^2 \\

x = x_0+v_{x0}t+\frac{1}{2}a_xt^2 \\

\end{array} \right.

[/tex]

Solve for y:

[tex]\left\{ \begin{array}{l}

y = v_{y0}t+\frac{1}{2}a_yt^2 = v_0t \sin \theta -\frac{1}{2}gt^2 \\

x = v_{x0}t = v_0t \cos \theta \\

\end{array} \right.

[/tex]

[tex]t = \frac{x}{v_0 \cos \theta}[/tex]

[tex]y = \frac{v_0 \sin \theta x}{v_0 \cos \theta} -\frac{1}{2}g(\frac{x}{v_0 \cos \theta})^2[/tex]

[tex]y = x \tan \theta - \frac{gx^2}{2 v_0^2 \cos ^2 \theta}[/tex]

Last edited:

- Last Post

- Replies
- 6

- Views
- 7K

- Last Post

- Replies
- 1

- Views
- 3K

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 6

- Views
- 5K

- Last Post

- Replies
- 1

- Views
- 4K

- Last Post

- Replies
- 1

- Views
- 14K

- Replies
- 2

- Views
- 2K

- Last Post

- Replies
- 7

- Views
- 5K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 11

- Views
- 874