1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Bayes net inference

  1. Dec 8, 2006 #1

    0rthodontist

    User Avatar
    Science Advisor

    I don't understand this simple algorithm from Russel & Norvig for computing a distribution of X given certain observed values e:

    Code (Text):

    function Enumeration-Ask(X, e, bn) returns a distribution over X
        inputs: X, the query variable
            e, observed values for variables E
            bn, a Bayes net with variables {X} u E u Y /* Y = hidden variables */
       
        Q(X) <- a distribution over X, initially empty
        for each value xi of X do
            extend e with value xi for X
            Q(xi) <- Enumerate-All(Vars[bn], e)
        return Normalize(Q(X))
       
    function Enumerate-All(vars, e) returns a real number
        if Empty?(vars) then return 1.0
        Y <- First(vars)
        if Y has value y in e
            then return P(y | parents(Y)) * Enumerate-All(Rest(vars), e)
            else return the sum over y of P(y | parents(Y)) * Enumerate-All(Rest(vars), ey)
                where ey is e extended with Y = y
     
    I am having trouble understanding exactly what Enumerate-All does. Specifically I do not understand how P(y | parents(Y)) is computed. We don't know the values that the parents of Y take, do we?
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?
Draft saved Draft deleted



Similar Discussions: Bayes net inference
  1. Visual basic .net 2008 (Replies: 0)

Loading...