- #1

- 279

- 0

## Homework Statement

## The Attempt at a Solution

Is my work correct?

- Thread starter temaire
- Start date

- #1

- 279

- 0

Is my work correct?

- #2

nvn

Science Advisor

Homework Helper

- 2,128

- 32

Your answer for part (b) currently looks correct. In part (c), you currently computed only the y-direction deflection and rotation, which are correct. But I think you now might also need to compute the z-direction deflection and rotation.

You accidentally typed 877, instead of 866, although you did not use it.

By the way, kN/m^2 is called kPa. Always use the correct, special name for a unit. E.g., 7214 kPa, not 7214 kN/m^2. However, it is better if you use 7.214 MPa, instead of 7214 kPa.

- #3

- 279

- 0

I know that the total deflection of the beam is the resultant of the deflections in the y and z directions, as shown

[tex]\delta = \sqrt{u^2 + v^2}[/tex]

where [itex]u[/itex] is the deflection in the z-direction and [itex]v[/itex] is the deflection in the y-direction.

However, how do I find the resultant rotation? Do I simply use the above formula and just switch [itex]u[/itex] and [itex]v[/itex] with the [itex]\theta_y[/itex] and [itex]\theta_z[/itex]?

- #4

nvn

Science Advisor

Homework Helper

- 2,128

- 32

- #5

- 279

- 0

Yes, I am leaving my answer for rotation in terms of y and z.

Thanks for the replies.

Thanks for the replies.

- Last Post

- Replies
- 14

- Views
- 7K

- Replies
- 0

- Views
- 15K

- Replies
- 3

- Views
- 11K

- Replies
- 2

- Views
- 246

- Replies
- 3

- Views
- 4K

- Last Post

- Replies
- 7

- Views
- 22K

- Last Post

- Replies
- 1

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 3K

- Last Post

- Replies
- 3

- Views
- 3K

- Last Post

- Replies
- 3

- Views
- 2K