(adsbygoogle = window.adsbygoogle || []).push({}); Bernoulli--Change in Pressure

1. The problem statement, all variables and given/known data

A venturi tube may be used as the inlet to an automobile carburetor. If the 2.0-cm diameter pipe narrows to a 1.0-cm diameter, what is the pressure drop in the constricted section for an airflow of 3.0 cm/s in the 2.0-cm section? ( = 1.2 kg/m3.)

2. Relevant equations

[tex]A_{1}v_{1}=A_{2}v_{2}=flow-rate[/tex]

[tex]\triangle P=\frac{1}{2}\rho\left(v_{1}^{2}-v_{2}^{2}\right)[/tex] (I knew how to derive this from Bernoulli's)

3. The attempt at a solution

[tex]flow-rate=A_{1}v_{1}=\frac{1}{4}\pi d_{1}^{2}=\frac{1}{4}\pi\left(0.02m\right)^{2}\left(0.03\frac{m}{s}\right)=9.42\times10^{-6}\frac{m^{3}}{s}[/tex]

[tex]v_{2}=\frac{flow-rate}{A_{2}}=\frac{9.42\times10^{-6}\frac{m^{3}}{s}}{\frac{1}{4}\pi\left(0.01m\right)^{2}}=0.12\frac{m}{s}[/tex]

[tex]\triangle P=\frac{1}{2}\rho\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2}\left(1.2\frac{kg}{m^{3}}\right)\left[\left(0.03\frac{m}{s}\right)^{2}-\left(0.12\frac{m}{s}\right)^{2}\right]=-8.1\times10^{-3}Pa[/tex]

All the answers were in Pascals, but somehow my answer was 1,000 times smaller! Since it was multiple-choice, I got the answer right anyways, but I'd like someone to point out where I went wrong. Thanks!

btw, what symbol should I use for the flow rate?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Bernoulli-Change in Pressure

**Physics Forums | Science Articles, Homework Help, Discussion**