1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Bernoulli's lemniscata

  1. Jun 22, 2011 #1
    Find area of Bernoulli's lemniscate: [itex]r^2=2a^2cos2\theta[/itex]


    [tex]A = 2 \int_{-\pi/4}^{+\pi/4} \int_{0}^{\sqrt{2a^2cos2\theta}} r \ dr\ d\theta[/tex]

    [tex]A = 2 \int_{-\pi/4}^{+\pi/4} \left [ \frac{r^2}{2} \right ]_{0}^{\sqrt{2a^2cos2\theta}}\ d\theta[/tex]

    [tex]A = 2 \int_{-\pi/4}^{+\pi/4} a^2cos2\theta \ d\theta[/tex]

    [tex]A = 2 a^2 \left [\frac{sen2\theta}{2} \right ]_{-\pi/4}^{+\pi/4}\ [/tex]

    [tex]A = 2 a^2 [/tex]

    Find Bernoulli's lemniscate: [itex]r^2=2a^2cos2\theta[/itex] inertia about [itex]y[/itex] axis.

    [tex]\frac{I}{2} = \int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2a^2 cos2\theta}} r^2\ cos^2 \theta\ r \ dr\ d\theta[/tex]

    [tex]\frac{I}{2} = \int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2a^2 cos2\theta}} r^3\ cos^2 \theta\ dr\ d\theta[/tex]

    [tex]\frac{I}{2} = \int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\sqrt{2a^2 cos2\theta}} r^3\ cos^2 \theta\ dr\ d\theta[/tex]

    [tex]\frac{I}{2} = \int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \left [ \frac{r^4}{4} \right ]_{0}^{\sqrt{2a^2 cos2\theta}} \ cos^2 \theta\ d\theta[/tex]

    [tex]\frac{I}{2} = \int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} a^4 cos^2 2\theta \ cos^2 \theta\ d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} cos^2 2\theta \ (cos 2\theta +1 )\ d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} (1-sen^2 2\theta ) \ (cos 2\theta +1 )\ d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} (cos2\theta -cos2\theta sen^2 2\theta+1-sen^2 2\theta) d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} (cos2\theta -cos2\theta sen^2 2\theta+cos^2 2\theta) d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \left (cos2\theta -cos2\theta sen^2 2\theta+\frac{(1+cos 4\theta)}{2} \right) d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2}\int_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}} \left (cos2\theta -cos2\theta sen^2 2\theta+\frac{cos 4\theta}{2} +\frac{1}{2} \right) d\theta[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2} \left [\frac{1}{2}sen2\theta -\frac{1}{6} sen^3 2\theta+\frac{sen 4\theta}{8} +\frac{\theta}{2} \right]_{-\tfrac{\pi}{4}}^{\frac{\pi}{4}}[/tex]

    [tex]\frac{I}{2} = \frac{a^4}{2} \left [1 -\frac{1}{3} +\frac{\pi}{4} \right][/tex]

    [tex]I = a^4 \left [\frac{2}{3} +\frac{\pi}{4} \right][/tex]

    [tex]I = a^4 \left [\frac{8+3\pi}{12} \right][/tex]
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Discussions: Bernoulli's lemniscata
  1. Bernoulli Equation (Replies: 5)

  2. Bernoulli's Theorem (Replies: 8)

  3. Bernoulli Loss (Replies: 1)

  4. Bernoulli's Equation (Replies: 4)