Beyond integration

1. Jul 31, 2014

alvin51015

This question may sound simplistic but is there a mathematical process which lies directly beyond integration integration, or more specifically beyond finding the antiderivative? And by that I mean loosely what is the next step? I do apologize if this statement sounds vague to higher minds. But I have certainly been racking my brain over this for awhile, and perhaps someone enlightened to where I am going with this can offer some assistance. Much appreciated.

2. Jul 31, 2014

Simon Bridge

As you can have higher-order derivatives so you can have higher order integrations.
i.e. The second order integration is basically how you get the solution to $y''=f(x)$

i.e. $y=3x^2$ ... will have indefinite integrals:

$\int y\;dx = x^3+c$

$\iint y\; dx\; dx = \frac{1}{4}x^4 + cx + d$

However, it is possible to get carried away with this sort of thing.
The integration does a bit more than finding the anti-derivative ... i.e. finding areas.

3. Jul 31, 2014

alvin51015

Yessir. I see your point. But what happens if I do infinite iterations of integrating starting with. Simple polynomial? I doubt if the end result would converge to anything algebraically inexpressible. But is there some higher and more abstract way to express what is going here?

4. Jul 31, 2014

Simon Bridge

There is no reason that the result, for an arbitrary integrand, would converge to anything in particular.