In a Bianchi IX universe the metric must be invariant under the SO(3) group acting on the 3-sphere. Hence, the metric must be translation invariant in the spatial parts, where t=constant. This implies that the metric must take the form such that:(adsbygoogle = window.adsbygoogle || []).push({});

ds^2 = dt^2 - g_ij(t)(x^i)(x^j), where g is a function of t alone. Am I right about all this?

What concerns me is that someone told me that the metric:

ds^2 = -dt^2 + a^2(t)(dx)^2 + b^2(t)(dy)^2 + (b^2sin^2y+a^2cos^2y)(dz)^2 - 2a^2cosydxdz

belong to the Bianchi IX models. But this doesn't seem right?!

Am I right about the Biachi IX models being homogeneous but not necesseraly isotropic?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Bianchi IX

**Physics Forums | Science Articles, Homework Help, Discussion**