Big O notation

  • Thread starter dobry_den
  • Start date
  • #1
115
0
[tex]\biggl(-\frac{x^2}2 + \frac{x^4}{24} - \frac{x^6}{720} +\mathcal{O}(x^8)\biggr)-\frac12\biggl(-\frac{x^2}2+\frac{x^4}{24}+\mathcal{O}(x^6)\biggr)^2+\frac13\biggl(-\frac{x^2}2+\mathcal{O}(x^4)\biggr)^3 + \mathcal{O}(x^8)\\ & =-\frac{x^2}2 + \frac{x^4}{24}-\frac{x^6}{720} - \frac{x^4}8 + \frac{x^6}{48} - \frac{x^6}{24} +\mathcal{O}(x^8)\\
[/tex]

(http://en.wikipedia.org/wiki/Taylor_series#First_example)

This is a Taylor expansion of f(x) = ln(cos(x)) . I just wonder what happened with the first three O's, especially with (O(x^6))^2 and (O(x^4))^3. Are they somehow incorporated in O(x^8)?
 

Answers and Replies

  • #2
NateTG
Science Advisor
Homework Helper
2,450
6
Both of those go to [itex]\mathcal{O}(x^8)[/itex] when you multiply out...
For example:
[tex]\left (- \frac{x^2}{2}+ \mathcal{O}(x^4}) \right)^3[/tex]
multiplies out to:
[tex]-\frac {x^6}{8} + 3\frac{x^4}{4} \mathcal{O}(x^4) - 3\frac{x^2}{2} \mathcal{O}{x^8} + \mathcal{O}(x^12)[/tex]
[tex]-\frac{x^6}{8} + \left( \mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)[/tex]
[tex]-\frac{x^6}{8} + \mathcal{O}(x^8)[/tex]
 
  • #3
115
0
that's exactly what i don't get... shouldn't the result of

[tex]\mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)[/tex]

be O(x^12) since that is the largest term?
 
Last edited:
  • #4
NateTG
Science Advisor
Homework Helper
2,450
6
that's exactly what i don't get... shouldn't the result of

[tex]\mathcal{O}(x^8) - \mathcal{O}(x^{10}) + \mathcal{O}(x^{12}) \right)[/tex]

be O(x^12) since that is the largest term?

Doesn't that depend on [itex]x[/itex]? (In Taylor expansions [itex]x[/itex] is 'small', so lower exponents are more important.)
 

Related Threads on Big O notation

  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
18
Views
35K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
1
Views
4K
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
3
Views
15K
Replies
8
Views
10K
  • Last Post
Replies
5
Views
2K
Top