Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Black hole thermodynamics

  1. Jul 23, 2014 #1

    The four laws of black hole thermodynamics-

    The Zeroth Law

    Surface gravity [itex](\kappa)[/itex] is constant over a black holes event horizon.

    The First Law

    'This law deals with the mass (energy) change, dM when a black hole switches from one stationary state to another.' The following (in natural units) applies-


    where the first term is relative to irreducible mass- [itex]M_{ir}=\sqrt(A/16\pi)[/itex], the second to rotation- J and the third to charge- Q.

    In accordance with Cosmic censorship: [itex]Q\leq M,\ a\leq M,\ J=aM\leq M^2[/itex] and [itex]Q^2+a^2\leq M^2[/itex] where [itex]M=Gm/c^2[/itex].

    & A=4\pi\left( 2M^2-Q^2+2M\sqrt{M^2-Q^2-a^2}\right)\\

    & \kappa=\frac{4\pi \sqrt{M^2-Q^2-a^2}}{A}\\

    & \Omega=\frac{4\pi\ ,a}{A}\\

    & \Phi=\frac{4\pi\, Q\, r_+}{A}

    where [itex]r_+=M+\sqrt(M^2-Q^2-a^2)[/itex]

    A is the surface area of the black hole, [itex]\kappa[/itex] is the surface gravity of the BH, [itex]\Omega[/itex] is the angular velocity, [itex]\Phi[/itex] is the electrostatic potential and [itex]r_+[/itex] is the outer event horizon.

    (for SI units, multiply the surface gravity* [itex](\kappa)[/itex] by c² for m/s² and the angular velocity** [itex](\Omega)[/itex] by c for rad/s)

    *'..For a black hole, which can only be truly treated relativistically, one cannot define a surface gravity as the acceleration experienced by a test body at the object's surface. This is because the acceleration of a test body at the event horizon of a black hole turns out to be infinite in relativity. Therefore, when one talks about the surface gravity of a black hole, one is defining a notion that behaves analogously to the Newtonian surface gravity, but is not the same thing..'
    Source- wikipedia, Surface Gravity

    **As viewed from infinity.

    The Second Law

    In any classical process, the area of the event horizon does not decrease

    [tex]dA\geq 0[/tex]

    nor does the black hole's entropy, [itex]S_{bh}[/itex] (the BH's event horizon area can remain stable in classical mechanics but will increase 1) if mass is added or 2) if spin or charge are reduced). The second law of black hole mechanics can, however, be violated if the quantum effect is taken into account, namely that the area of the event horizon can be reduced via Hawking radiation.

    The Third Law

    'The limit [itex]\kappa=0[/itex] cannot be reached within a finite time, in other words, regardless of how many processes are involved, the black hole will never reach the limit [itex]\kappa=0[/itex]. However, extremal black holes, for example the Kerr black hole in which a/M=1, do have [itex]\kappa=0[/itex] thus zero temperature (absolute zero) but non-zero entropy. To actually reduce the surface gravity to zero is merely an idealized case because it is forbidden by the Cosmic censorship conjecture.'


    Extended explanation

    The First Law (cnt)

    The first term, [tex](\kappa/8\pi)\,dA[/itex], is derived from the temperature (TH) and entropy (Sbh) of the black hole (in SI units)-

    & T_{\text{H}}=\frac{\hbar \kappa}{2\pi c k_{\text{B}}}\\

    & S_{\text{bh}}=\frac{k_{\text{B}}c^3}{4\hbar G}A\\

    where ħ is the reduced Planck constant, κ is the surface gravity of the BH and kB is the Boltzmann constant.

    In natural units: [itex]T_{\text{H}}=\kappa/2\pi,\ S_{\text{bh}}=A/4[/itex]

    The first law of black hole mechanics is analogous with the first law of thermodynamics-

    [itex]dE=T\,dS[/itex] + work terms

    where T is temperature and dS is the change in the entropy of the system.

    For a black hole-

    [itex]dM=T_{\text{H}}\,dS_{\text{bh}}[/itex] + work terms

    in SI units (derived from the equations for TH and Sbh)-

    [itex]T_{\text{H}}\,dS_{\text{bh}}=\frac{c^2\kappa}{8\pi G}\,dA[/itex]

    which in natural units is [itex]T_{\text{H}}\,dS_{\text{bh}}=(\kappa/8\pi)\,dA[/itex]

    * This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Threads - Black hole thermodynamics Date
I Black Hole Thermodynamics Jun 19, 2016
Second law of thermodynamics and black holes ? Sep 25, 2009
Thermodynamics and black holes. Dec 17, 2007
Black Holes and Thermodynamics Jun 8, 2005
An Introduction to Black Hole Thermodynamics Oct 28, 2003