Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Black hole vs big bang

  1. Feb 27, 2013 #1
    If the universe was at or near a singularity in the past, why is it not a black hole now? How can part of the universe become a black hole, and not the whole universe?
    Last edited: Feb 27, 2013
  2. jcsd
  3. Feb 27, 2013 #2


    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    Could you be a bit clearer. We have no proof that singularities occur in Nature. The original meaning of the term is a breakdown in some man-made theory. A place where the theory blows up and fails to match physical reality. So what is or is not a "singularity" depends totally on which man-made physical theory you happen to be using.

    Your questions don't seem to make sense. It sounds like you are imagining something as real, that according to mainstream cosmology is not real--but what is it exactly?

    Why would you suppose that the whole universe would become a black hole? As far as we know, from the standard model of cosmology, it is on track to continue expanding. Why should it collapse? You could be more explicit in describing what you are imagining.

    Here's a good place to get started understanding cosmology:
    The first page is blank, so scroll down.
    It still uses words like "singularity" a bit confusingly, but it's good for starters.

    I guess a friendly word of advice would be to be cautious about believing TV and mass market popularization of cosmology.
    Last edited: Feb 27, 2013
  4. Feb 27, 2013 #3
    The "big bang" as far as I understand, refers to a time when the universe was very small. It then expanded. When there is a high enough concentration of mass in our universe now, it becomes a black hole. Why is it that when all the mass was concentrated at or around the "big bang" did it not just become a black hole?
    Last edited: Feb 27, 2013
  5. Feb 27, 2013 #4
    The BB didn't happen as a singularity as per a blackhole.
    Rather its a rapid expansion of spacetime. The BB model only describes from 10 to the -44 seconds forward.
    (sorry for the longhand typing from phone)

    This era is the planch epoch.
    I can provides listing of epochs for you if you wish.
    During the planch epoch, matter did not exist. Instead its best to describe this epoch in terms of planch length, planch time and units of planch time.
    There are a couple of models that represent how this works.
    The one with the best fit to data is lamdaCDM.
    However there is a few models that are valid as to how this all works from before Planch era.
    One is through what is the false vacuum method described by A. Guth which can easily described as false vaccuum. This model describes everything starting from nothing. Lawrence R Kraus supports a later variation of this model.
    I'll let others explain Loop quantum gravity.
    Hope that helps
    Last edited: Feb 27, 2013
  6. Feb 27, 2013 #5


    User Avatar
    Science Advisor
    Gold Member
    Dearly Missed

    I didn't see Mordred already replied. Had to do a chore and got sidetracked half way thru. I'll leave this as it is anyway.
    Well the term "big bang" is misleading because it suggests an explosion from a point outwards into empty space. That is not the idea. "start of expansion" is more neutral.

    In the standard picture of the early stage of expansion all space was filled with a uniform high density. There was no empty space and there was no one favored location where stuff was concentrated. We don't know 'very small' but we do think "very dense".

    High density does not by itself cause collapse to a black hole.
    There is a kind of "tug-of-war" contest between the expansion rate and the density.
    In popularizations they don't tell you about that. They only tell you that IN NON-EXPANDING SPACE a certain density concentrated at some location will result in formation of a black hole at that location. They don't discuss other cases.

    Suppose the expansion rate overwhelms the density.

    We have no proof that the universe as a whole was "very small" at the start of expansion. According to the mainstream expansion cosmology model it could have been infinite volume, or a large finite volume at the start. Measurements are not yet good enough to put a number on the current volume of the universe as a whole. We only know the size of the currently observable part of it.

    The main thing is that it was very DENSE. So the currently observable portion would have been concentrated in a very small volume. What we can currently see, out of the limits of observation, was very small at the start.

    What started the expansion is so far not known. There are various theories.
    Last edited: Feb 27, 2013
  7. Feb 27, 2013 #6
    So you are saying that space was expanding so fast after the big bang, that a black hole was impossible?
  8. Feb 27, 2013 #7
  9. Feb 27, 2013 #8


    User Avatar
    Science Advisor
    Gold Member

    We don't know the physics involved under conditions approaching those of the BB model. We only know they are different.
  10. Feb 28, 2013 #9
    It sounds a little funny that at the beginning, expansion was super fast. Then during most of forever, expansion was close to linear; and just now expansion is speeding up again. I know that’s what the models say, but it seems like a pibtac
    Last edited: Feb 28, 2013
  11. Feb 28, 2013 #10
    The reason for this has everything to do with the sequence of events that occured during the initial stages. Prior to the planch epoch opinions differ on what occured.
    Here is a list of some of the earlier stages.

    In the early universe radiation was dominated so inflation was rapid. Later matter formed after the temperature dropped below 3000 kelvin. Big bang nucleosynthesis best describes this sequence.
    that matter slowed expansion so its referred to as the matter dominated era. However dark energy (cosmological constant/vacuum energy) continued growing. Eventually in non gravitational bound regions. Ie the voids between galaxy clusters. The energy driving expansion is currently explained as vacuum energy. This energy became strong enough to start accelerating expansion. Leading to what we see today in the lambda dominated universe
    Last edited: Feb 28, 2013
  12. Feb 28, 2013 #11


    User Avatar
    Science Advisor

    Just to clarify, inflation occurs during inflaton (or vacuum energy) domination, not radiation domination. Radiation domination occurs after inflation when the inflaton decays.

    gregtomko, the models are what they are because that's what the data tells us. As others have said, we don't have a physical model for what, if anything, occurred at t=0. The "big bang" is the name given to the model describing the evolution of the early universe as it expanded from a hot, dense initial phase to an older universe. We can apply this model all the way back to very early times, as Mordred points out, we just can't apply it beyond the Planck scale. What was there? Nobody knows. The singularity that arises from GR does not indicate anything physical, it merely signals that the theory is being applied outside its bounds. So we'd be remiss to take the singularity seriously. In any event, it's certainly true that densities were very high back then. So does this imply that a black hole should have formed? Black holes arise when a spherically symmetric mass distribution becomes sufficiently dense. Was the mass density of the early universe spherically symmetric? No! (at least not from the time that the big bang is a descriptive model of the universe) The early universe was homogeneous and isotropic, and the gravity of such a mass distribution causes the universe to expand (quickly or otherwise, it can even contract!). But it does not form a black hole -- it doesn't have the correct symmetry. It turns out that gravitation cares very much about the nature of the mass/energy doing the gravitating.
  13. Feb 28, 2013 #12
    The problem I think is in what we call usually a "singularity"... a Black Hole singularity is not necessarily the same thing as the Big Bang singularity.
    Black Hole singularity is a local space-time singularity and is covered by an event horizon.
    In the case of Big Bang instead the singularity is non-local, is extended to the whole space-time; moreover the only horizon emerging from this picture is a particle horizon, not an event horizon.

    The inevitability of singularities was proved in two really important theorems by Roger Penrose (a collapsing star with a mass greater than a certain limit will necessarily end up in a singularity) and by Stephen Hawking (this one indeed regards the Big Bang singularity, even if I do not know in detail what aspects of this singularity). The way used to prove these theorems is to study geodesic incompleteness, meaning that if we show that a geodesic of space-time cannot be extended to ##+\infty## and ##-\infty## in the affine parameter space, then it will end up in a singularity (future-incompleteness for BHs, past-incompleteness for BB).

    These results anyway are summarized in the book by Hawking & Ellis "The large scale structure of space-time" (Cambridge university press) but it is really technical and difficult to read, so I would advise to read only having a good knowledge of differential geometry and General Relativity.
  14. Mar 1, 2013 #13
    OK so, initially the universe was very dense, and not neccessarily a singularity. But doesn't the common origin of particles/spacetime imply some sort of singularity in the beginning?
  15. Mar 1, 2013 #14
    Yes, there IS a singularity in the beginning. And you can't talk of common origin of particles and space-time... as far as we know particles (at least as we know them) formed later in the evolution... even quarks formed later. In the Big Bang we do not know anything of what happened in term of physical processes. At those energies (remember that diverging mass density implies diverging energy as well) also Quantum Field Theory fails and we will have to use Quantum Gravity. Problem is we do not have a theory for that still, only some candidates. Good candidates are String Theory, Loop Quantum Gravity and all that stuff, but they are not so developed to be able to explain all this, at least for now.
  16. Mar 1, 2013 #15


    User Avatar
    Gold Member

    To emphasize what tia89 did not make completely explicit, what he is describing (" ... we do not know anything of what happened" ...) IS what we mean by singularity. A black hole singularity and a big bang singularity do not necessarily have ANYTHING to do with each other beyond the fact that we call them the same thing. It would be a LOT more clear if no one every used the term "singularity" but always said "a place where our theories break down and we have no idea what was going on"; that's what "singularity" is short-hand for, but the fact that different kinds of singularities have the same name leads to the false conclusion that they may be related. (They MAY be related, but we don't know that and they probably aren't).
  17. Mar 1, 2013 #16
    Well, theories aside, I think it still makes sense to talk about a common origin, considering the *unchallenged* uniformity of nature: an electron is just like any other electron, anywhere, as far as anyone can tell, so we know the universe had to have a single/singular origin, we just don't have any conceivable idea how it happened beyond the planck epoch. And, as I understand from the comments above, it needed not to be infinitesimally small at that point. So just how small would have been, say, the currently observable part of the universe in the planck epoch? Or the universe as a whole?
  18. Mar 1, 2013 #17


    User Avatar
    Gold Member

    A common origin for WHAT? The universe and black holes? I don't think so.

    I've heard things from the size of an atom to the size of a grapefruit. Folks seems to just make stuff up. BUT ... VERY small compared to the 95+billion light years across that it is now!

    Totally unknown, could be infinite. If it's infinite now, it was infinite then (finite things don't become infinite).
  19. Mar 1, 2013 #18
    And here you come again in the realm of theories, which by the way can't be put aside as you would like to do... and this because we do not have any idea of what really happened. There are only theories and sometimes they don't even agree.
    Anyway as for the question about the size of the universe, it all depends on inflation (again a theory) http://en.wikipedia.org/wiki/Inflation_(cosmology [Broken]). And I do not think there is a way (at least by now) to answer your question, as we can not observe anything beyond the Hubble horizon (you can visualize it as a sphere around us with the radius given by the time passed from Big Bang till today).
    And again, aside knowing that the Big Bang is the most probable "beginning" of the Universe (also here there are theories which avoid the Big Bang, but they are not in agreement with observations most of times), what is actually Big Bang is unknown, and will probably be unknown for many years... giving a size to the Universe is then clearly impossible, at least to my knowledge.
    Last edited by a moderator: May 6, 2017
  20. Mar 1, 2013 #19
    I wasn't implying a similarity between a black hole singularity and the singularity "at the beginning".

    I think what we can know about the BB, is that it was the singular origin of the universe.

    The fact that, for example, photons coming from opposite ends of the observable universe report about a remarkably self-similar universe, talks about that in the past, the predeccessors of those parts of the universe were not simply closer to each other, but were, in fact, the results of the same process, that, as it seems now, happened prior to the planck era. You could call that a singular origin of the universe.
    Now, a singular origin implies finiteness, so I think the universe we live in is finite, although very-very big.
  21. Mar 1, 2013 #20


    User Avatar
    Science Advisor

    This is shear speculation. Your assertion that all things emerged from the same singular origin because they are similar is but one possible conclusion. First, as has been painstakingly laid out in this thread -- the big bang singularity is not physical. You can imagine that there was a singularity in the past, and you can call this thing the big bang, but you wouldn't be doing science then. You'd do just as well to call it God.

    The uniformity of the CMB to which you refer does not imply a singular origin -- what would that even mean? Again -- we don't have any physical model whatsoever that is operative at the times about which you are speculating, let alone one that describes a physical singularity in any meaningful way. What the uniformity of the CMB tells us is that very early on (after the Planck time, btw), the process that governed the generation of the CMB photons varied little across space. This requires really 2 things: that the laws of physics are the same across the observable universe and that the conditions (the inputs to these laws) were similar across the universe. The former is generally assumed, the latter can be understood by proposing an inflationary epoch, for example.

    You also argue that the fact that electrons are identical implies that the universe had a singular beginning, i.e. all electrons came from the same place. But what about those electrons that we create in colliders every day? Or those that result from pair production following high energy cosmic ray collisions in the upper atmosphere? It makes more sense to suppose that it's the laws of physics that are prescribed and uniform -- not that all matter with similar properties necessarily came from the (exact) same (singular) point.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook