Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Block form of the generators of the fundamental representation of SU(2N)

  1. Jun 5, 2012 #1
    1. The problem statement, all variables and given/known data
    I am calculating the corrections to the beta functions of a quite general SU(N) gauge-yukawa theory coming from coupling an electro-weak (SU(2)xU(1)) sector similar to that of the Standard Model.

    To do this, I need to calculate
    where i use the Einstein summation convention, [itex]\delta_{bc}[/itex] is the Kronecker delta function, [itex]T^0_{bc}=\frac{\delta_{bc}}{\sqrt{4N}}[/itex], [itex]T^A_{bc}[/itex] is a generator of the fundamental representation of SU(2N), [itex]S'^r[/itex] is block diagonal with the r'th pauli matrix in each of the blocks, [itex]A, B, C, D=0,1,...,4N^2-1[/itex] and [itex]a, b, c, d, e, f=1,2,...,2N[/itex].

    2. Relevant equations
    Since, this is the fundamental representation of SU(2N), we have
    I will also use the Fierz Identity
    which for the case of SU(2) can also be written
    where [itex]\alpha,\beta,\gamma,\delta=1,2[/itex].

    3. The attempt at a solution
    I decompose the block diagonal matrix
    S'^r_{ab}=S'^r_{\alpha k,\beta l}=\sigma^r_{\alpha\beta}\delta_{kl},
    where [itex]k,l=1,2..,N[/itex], and I then use this and the Fierz identity above to write
    S'^r_{ab}S'^r_{cd}=S'^r_{\alpha k,\beta l}S'^r_{\gamma m,\delta n}&=\sigma^r_{\alpha\beta}\delta_{kl}\sigma^r_{\gamma\delta}\delta_{mn}\\
    where I have recomposed the indices. Now my problem is that the first quartet of deltafunctions cannot be recombined using the same indices, so I've been trying to find out if it is possible, for a general N, to decompose the generators of SU(2N) in a similar form, that is find any objects U, V, and W such that
    T^A_{ab}=T^A_{\alpha k, \beta l}=U^{ABC}V^B_{\alpha\beta}W^C_{kl}.

    I've been working with this notation way too much, so feel free to ask questions if I'm being unclear ;-).
    Last edited: Jun 5, 2012
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted