(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Light of wavelength 410.7 nm is observed in emission from a hydrogen source. a) what transition between hydrogen bohr orbits is responsible for this radiation? b) to what series does this transition belong to?

2. Relevant equations

1/lambda=Z^2 *R(1/n^2-m^2) ,

n being the final transition and m being the initial transition state. R is the Rydberg constant and the Rydberg constant for hydrogen is 1.096776*10^7 m^-1 and Z being the atomic number.

3. The attempt at a solution

Since the the wavelength is light , I know that its going to be in the visible spectrum of the E-M spectrum and the Balmer series is always part o the visible spectrum. the initial transition energy state in the balmer series is always m=2. Therefore since I know the initial transition state , R , Z and the wavelength , I thought I could find the n, the final transition state. here are my calculations below:

1/lambda)*1/(R)= (1/n^2-1/m^2) =>(1/(4.10e-7 m))*(1/(1.096776e7 m^-1))= (1/(2^2)-1/(m^2)) => .2224=(1/4-1/(m^2))=> -1/m^2 = -(.222-.25) => m^2= 1/.028 = 5.97 m = 6

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Bohr model question

**Physics Forums | Science Articles, Homework Help, Discussion**