Boltzmann Equation-where'd the 3 come from?

  • Thread starter fliptomato
  • Start date
  • #1
78
0

Main Question or Discussion Point

Boltzmann Equation--where'd the 3 come from?

Greetings, I'm a little bit confused about the derivation for the Boltzmann equation for a particle in thermal equilibrium in the Friedman-Robertson-Walker metric. I've been following the exposition in Kolb and Turner, The Early Universe p. 116. I reproduce all the relevant results here.

In particular:
We are given (K&T, eq 5.5) that for a phase space distribution [tex]f[/tex] the form of the Liouville operator in the FRW model is given by:

[tex]\hat{\mathbf{L}}[f(E,t)] = E\frac{\partial f}{\partial t}-\frac{\dot{R}}{R}|\mathbf{p}|^2\frac{\partial f}{\partial E}[/tex]

Further, the number density [tex]n[/tex] is given by an integral over momenta (K&T eq. 5.6):

[tex]n(t) = \frac{g}{(2\pi)^3}\int d^3p f(E,t)[/tex]

where [tex]g[/tex] is the number of internal degrees of freedom.

The Boltzmann equation, [tex]\hat{\mathbf{L}}[f]= \mathbf{C}[f][/tex], can then be written out by plugging in the above equation for the Liouville operator on the left hand side.

We can then divide by [tex]E[/tex], multiply by [tex]\frac{g}{(2\pi)^3}[/tex], and perform a momentum space integral to express the Boltzmann equation in terms of [tex]n[/tex].

Kolb and Turner write the result as:

[tex]\frac{dn}{dt} + 3\frac{\dot{R}}{R}n = \frac{g}{(2\pi)^3}\int\textbf{C}[f]\frac{d^3p}{E}[/tex]

I'm confused by the factor of 3 in the seccond term and am not sure how this is resolved. I'm also not sure how to treat the energy in the momentum integral--I assume that since [tex]E^2=\mathbf{p}^2+m^2[/tex], one can rewrite the momentum integral in spherical coordinates where the function [tex]f[/tex] is a function of the radial coordinate alone. I assume some integration by parts is necessary, but this still does not account for the factor of 3.

Any help would be appreciated,

Best,
Flip
 
Last edited:

Answers and Replies

  • #2
hellfire
Science Advisor
1,047
1
  • #3
Garth
Science Advisor
Gold Member
3,574
105
fliptomato said:
I assume some integration by parts is necessary, but this still does not account for the factor of 3.
I haven't read Kolb and Turner's book, but I think you'll find the factor 3 and the rest of that term comes from:
[tex]\frac{1}{R^3}\frac{d}{dt}(R^3)n [/tex]

Garth
 
  • #4
2
0


<deleted>
 
Last edited:
  • #5
2
0


A bit late for the one who asked, but perhaps it helps those who have the same problem

[tex]E\frac{\partial f}{\partial t}-\frac{\dot{R}}{R}|\mathbf{p}|^2\frac{\partial f}{\partial E} = \hat{\mathbf{C}}[f(E,t)][/tex]
divide by E
[tex]\frac{\partial f}{\partial t}-\frac{\dot{R}}{R}|\mathbf{p}|^2\frac{\partial f}{E\partial E} = \hat{\mathbf{C}}[f(E,t)]\frac{1}{E}[/tex]
integrate
[tex]\frac{g}{(2\pi)^3}\int d^3p\frac{\partial f}{\partial t}-\frac{\dot{R}}{R}|\mathbf{p}|^2\frac{\partial f}{E\partial E} = \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
[tex]n(t)-\frac{\dot{R}}{R}\frac{g}{(2\pi)^3}\int d^3p|\mathbf{p}|^2\frac{\partial f}{E\partial E} = \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
use
[tex]E\partial E=p\partial p[/tex]
[tex]n(t)-\frac{\dot{R}}{R}\frac{g}{(2\pi)^3}\int 4\pi dp|\mathbf{p}|^2|\mathbf{p}|^2\frac{\partial f}{p\partial p} = \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
[tex]n(t)-\frac{\dot{R}}{R}\frac{g}{(2\pi)^3}\int 4\pi dpp^3\frac{\partial f}{\partial p} = \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
integration by part:
[tex]n(t)+\frac{\dot{R}}{R}\frac{g}{(2\pi)^3}\int 4\pi dp3p^2f= \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
[tex]n(t)+3\frac{\dot{R}}{R}\frac{g}{(2\pi)^3}\int 4\pi dpp^2f= \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]
[tex]n(t)+3\frac{\dot{R}}{R}n(t)= \frac{g}{(2\pi)^3}\int\hat{\mathbf{C}}[f(E,t)]\frac{d^3p}{E}[/tex]


Best,
stanix
 

Related Threads on Boltzmann Equation-where'd the 3 come from?

  • Last Post
2
Replies
49
Views
5K
Replies
6
Views
3K
Replies
3
Views
2K
  • Last Post
Replies
0
Views
465
  • Last Post
Replies
6
Views
528
  • Last Post
Replies
15
Views
2K
  • Last Post
Replies
22
Views
4K
  • Last Post
Replies
2
Views
9K
Replies
1
Views
524
  • Last Post
Replies
2
Views
3K
Top