I'm trying to get a metric in the frame of a boosted observer. The spacetime in question has coframe and frame basis vectors(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\begin{align*}

\vec{\sigma}^0 = \frac{-1}{\sqrt{F}}dt\ \ \ \ & \vec{e}_0 = -\sqrt{F}\partial_t \\

\vec{\sigma}^1 = \sqrt{F}dz\ \ \ \ & \vec{e}_1 = \frac{1}{\sqrt{F}}\partial_z \\

\vec{\sigma}^2 = \sqrt{F}dr\ \ \ \ & \vec{e}_2 = \frac{1}{\sqrt{F}}\partial_r \\

\vec{\sigma}^3 = r\sqrt{F}d\phi\ \ \ \ & \vec{e}_3 = \frac{1}{r\sqrt{F}}\partial_\phi

\end{align*}

[/tex]

Boosting the coordinate frame basis by [itex]\beta[/itex] in the [itex]\phi[/itex] direction gives the new frame basis

[tex]

\begin{align*}

\vec{f}_0 &= -\gamma\sqrt{F}\partial_t + \gamma\beta \frac{1}{r\sqrt{F}}\partial_\phi \\

\vec{f}_1 &= \frac{1}{\sqrt{F}}\partial_z \\

\vec{f}_2 &= \frac{1}{\sqrt{F}}\partial_r \\

\vec{f}_3 &= \gamma\frac{1}{r\sqrt{F}}\partial_\phi + \gamma\beta \sqrt{F}\partial_t

\end{align*}

[/tex]

Now, my problem is reading off the new coframe basis [itex]s[/itex]. My attempt is below, but I'm only 50% confident it's right.

[tex]

\begin{align*}

{\vec{s}}^0 &= (\gamma\sqrt{F})^{-1}dt+(\gamma\beta)^{-1}r\sqrt{F}d\phi \\

{\vec{s}}^1 &= \sqrt{F}dz \\

{\vec{s}}^2 &= \sqrt{F}dr \\

{\vec{s}}^3 &= \gamma^{-1}r\sqrt{F}d\phi + (\gamma\beta)^{-1}\sqrt{F}dt

\end{align*}

[/tex]

The metric that arises from this is sort of plausible. I'd appreciate any pointers, particularly to any errors.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Boosting the frame basis

Loading...

Similar Threads - Boosting frame basis | Date |
---|---|

I Spinor representation of Lorentz transformations | Mar 14, 2017 |

I Lorentz group, boost and indices | Feb 5, 2017 |

I Electro-magnetic force in special relativity | Jan 25, 2017 |

I Questions about a spinning disk/ring and Lorentz boosts | Jul 22, 2016 |

Synchronized Clocks in Frames boosted by Acceleration | Dec 5, 2012 |

**Physics Forums - The Fusion of Science and Community**